
Appl. Comput. Harmon. Anal. 23 (2007) 198–214

www.elsevier.com/locate/acha

Fully online classification by regularization ✩

Gui-Bo Ye a, Ding-Xuan Zhou b,∗

a School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China
b Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

Received 22 March 2006; revised 15 December 2006; accepted 21 December 2006

Available online 10 January 2007

Communicated by Charles K. Chui

Abstract

In this paper we consider fully online learning algorithms for classification generated from Tikhonov regularization schemes
associated with general convex loss functions and reproducing kernel Hilbert spaces. For such a fully online algorithm, the regu-
larization parameter in each learning step changes. This is the essential difference from the partially online algorithm which uses
a fixed regularization parameter. We first present a novel approach to the drift error incurred by the change of the regularization
parameter. Then we estimate the error of the learning process for the strong approximation in the reproducing kernel Hilbert space.
Finally, learning rates are derived from decays of the regularization error. The convexity of the loss function plays an important
role in our analysis. Concrete learning rates are given for the hinge loss and the support vector machine q-norm loss.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Classification algorithm; Online learning; Reproducing kernel Hilbert spaces; Regularization; Error analysis

1. Introduction

This paper aims at fully online binary classification algorithms generated from Tikhonov regularization schemes
associated with general convex loss functions and reproducing kernel Hilbert spaces.

A binary classification algorithm produces a binary classifier C :X → Y which divides the input space X (a metric
space such as a subset of R

n) into two classes represented by Y = {1,−1}. The classifier C makes a prediction y ∈ Y

for each point x ∈ X (a vector x ∈ R
n with n components corresponding to n practical measurements). A real valued

function f :X → R can be used to generate a classifier C(x) = sgn(f (x)) where

sgn
(
f (x)

) =
{

1, if f (x) � 0,

−1, if f (x) < 0.
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A loss function φ : R → R+ is often used for the real valued function f , to measure the local error φ(yf (x)) suffered
from the use of sgn(f ) as a model for the process producing y at x ∈ X.

A Mercer kernel K :X × X → R is a continuous and symmetric function which is positive semidefinite, i.e., for
any finite set of points {x1, . . . , x�} ⊂ X, the matrix (K(xi, xj ))

�
i,j=1 is positive semidefinite. The reproducing kernel

Hilbert space (RKHS) HK associated with the kernel K is defined [1] to be the completion of the linear span of the
set of functions {Kx = K(x, ·): x ∈ X} with the inner product 〈·, ·〉K given by 〈Kx,Ky〉K = K(x,y). Its reproducing
property plays a special role in learning theory:

〈Kx,f 〉K = f (x), x ∈ X, f ∈ HK. (1.1)

We consider classification algorithms induced by regularization schemes learned from samples. Assume that ρ is
a probability distribution on Z = X × Y and z = {zt = (xt , yt )}Tt=1 ∈ ZT is a set of random samples independently
drawn according to ρ. The batch learning algorithm for classification produces a classifier sgn(fz,λ) by implementing
an off-line regularization scheme in HK involving the sample z, λ > 0 and the loss function φ as

fz,λ = arg min
f ∈HK

{
1

T

T∑
t=1

φ
(
ytf (xt )

) + λ

2
‖f ‖2

K

}
. (1.2)

This off-line classification algorithm has been extensively studied in the literature. In particular, the error analysis is
well done; see, e.g., [8,16,21,22,25,27]. The main idea is to show that fz,λ has behaviors similar to the regularizing
function f

φ
λ ∈HK of scheme (1.2) defined by

f
φ
λ = arg inf

f ∈HK

{
E(f ) + λ

2
‖f ‖2

K

}
. (1.3)

Here E(f ) is the generalization error defined as

E(f ) =
∫
Z

φ
(
yf (x)

)
dρ.

Though the off-line algorithm (1.2) performs well in theory and in many applications, it might be practically
challenging when the sample size T or data is very large. For example, if φ(x) = (1 − x)+ = max{1 − x,0} or
(1 − x)2+ corresponding to the support vector machines (SVM), the scheme (1.2) is a quadratic optimization problem.
Its standard complexity is about O(T 3).

When the sample size is large, online learning algorithms with linear complexity O(T ) can be applied and provide
efficient classifiers. These algorithms are generalizations of the perceptron which has a long history, see, e.g., [4,15].

Here we study a family of online learning algorithms associated with a general convex loss function. We assume
throughout the paper that the loss function has the following form.

Definition 1. We say that φ : R → R+ is an admissible loss function if it is convex and differentiable at 0 with
φ′(0) < 0.

The convexity of φ tells us that the left derivative φ′−(x) = limδ→0−(φ(x + δ) − φ(x))/δ exists. In this paper we
study the following (stochastic gradient descent) online algorithm for classification given in [4,10,17,26].

Definition 2. The fully online algorithm for classification is defined by f1 = 0 and

ft+1 = ft − ηt

{
φ′−

(
ytft (xt )

)
ytKxt + λtft

}
for t = 1, . . . , T , (1.4)

where λt > 0 is called the regularization parameter and ηt > 0 the step size. The classifier is given by the sign function
sgn(fT +1).

In this fully online algorithm, the regularization parameter λt changes with the learning step t . Throughout the
paper we assume that λt+1 � λt for each t ∈ N. When the regularization parameter λt ≡ λ1 is independent of the
step t , we call the scheme (1.4) partially online.



200 G.-B. Ye, D.-X. Zhou / Appl. Comput. Harmon. Anal. 23 (2007) 198–214
The main purpose of this paper is to study the role of the regularization parameter in the fully online algorithm.
A usual form is λt = λ1t

−γ for some γ > 0.
The prediction power of classification algorithms are often measured by the misclassification error which is defined

for a classifier C :X → Y to be the probability of the event {C(x) �= y}:
R(C) = Prob

{
C(x) �= y

} =
∫
X

P
(
y �= C(x) | x)dρX. (1.5)

Here ρX denotes the marginal distribution of ρ on X, and P(· | x) the conditional probability measure. The best
classifier minimizing the misclassification error is called the Bayes rule (e.g., [7]) and can be expressed as fc =
sgn(fρ), where fρ is the regression function

fρ(x) =
∫
Y

y dρ(y | x) = P(y = 1 | x) − P(y = −1 | x), x ∈ X. (1.6)

Recall that for the online learning algorithm (1.4), we are interested in the classifier sgn(fT +1) produced by the real
valued function fT +1 from z = {zt }Tt=1. So the error analysis for the online classification algorithm (1.4) is aimed at
the excess misclassification error

R
(
sgn(fT +1)

) −R(fc). (1.7)

To illustrate the special role played by the varying regularization parameter {λt } in the fully online algorithm (1.4),
we state a result, proved in Section 6, for the hinge loss φ(x) = (1 − x)+. For this loss, the online algorithm (1.4) can
be expressed as f1 = 0 and

ft+1 =
{

(1 − ηtλt )ft , if ytft (xt ) > 1,

(1 − ηtλt )ft + ηtytKxt , if ytft (xt ) � 1.
(1.8)

Example 1. Let κ := supx∈X

√
K(x,x), φ(x) = (1 − x)+ and for some λ1 > 0, 0 < η1 � 1

2κ2+λ1
, 0 < ε < 1

4 , the
parameters {λt , ηt } take the form

λt = λ1t
− 1

4 , ηt = η1t
ε− 1

2 ∀t ∈ N. (1.9)

If for some 0 < β � 1 and D0 > 0, the pair (ρ,K) satisfies

inf
f ∈HK

{
‖f − fc‖L1

ρX
+ λ

2
‖f ‖2

K

}
� D0λ

β ∀λ > 0, (1.10)

then

Ez1,...,zT

(
R

(
sgn(fT +1)

) −R(fc)
)
� CεT

−min{ β
4 , 1

8 − ε
2 }, (1.11)

where Cε = Cε,η1,λ1,κ,D0,β is a constant depending on ε, η1, λ1, κ,D0 and β .

The condition (1.10) concerns the approximation of the function fc in the L1 space L1
ρX

by functions from the
RKHS HK . It can be characterized by requiring fc to lie in an interpolation space of the pair (L1

ρX
,HK), an inter-

mediate space between the metric space L1
ρX

and the much smaller approximating space HK . For details, see the
discussion in [3].

Assumptions like (1.10) are necessary to determine the regularization parameter for achieving the learning rate
(1.11). This can be seen from the literature [16,25,27] of the off-line algorithm (1.2): learning rates are obtained
by suitable choices of the regularization parameter λ = λ(T ), according to the behavior of the approximation error
estimated from a priori conditions on the distribution ρ and the space HK .

2. Main results

In this paper we investigate fully online algorithm (1.4) in the sense that the regularization parameter λt depends
on the step t . This makes the regularizing function f

φ = f
φ change with the step t .
λ λt
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2.1. Bounds for the drift error

Our first main result bounds the difference of the regularizing function f
φ
λ for different regularization parameters.

Denote f
φ
λ0

= 0.

Definition 3. The drift error associated with the pair (K,φ) and the regularization parameter sequence {λt }t∈N is
defined by means of the function f

φ
λ in (1.3) as

dt := ∥∥f
φ
λt

− f
φ
λt−1

∥∥
K

, t ∈ N.

The drift error is an approximation-type error and does not depend on the sample drawn. To state our bound, we
need the regularization error [3] or approximation error [18,19] defined as follows.

Definition 4. The regularization error D(λ) associated with the triple (K,φ,ρ) is

D(λ) = inf
f ∈HK

{
E(f ) − E

(
f φ

ρ

) + λ

2
‖f ‖2

K

}
= E

(
f

φ
λ

) − E
(
f φ

ρ

) + λ

2

∥∥f
φ
λ

∥∥2
K

, λ > 0, (2.1)

where f
φ
ρ is a minimizer of the generalization error E(f ).

The regularization error measures the approximation ability of the space HK with respect to the classification
process involving φ and ρ. It is independent of the sample. If HK is dense in C(X), we know that limλ→0 D(λ) = 0.
So a natural assumption would be

D(λ) � D0λ
β for some 0 � β � 1 and D0 > 0. (2.2)

This is a fundamental assumption about the hypothesis space itself. Since D(λ) � E(0) + 0 = φ(0) for any λ > 0, we
see that (2.2) always holds with β = 0 and D0 = φ(0). Moreover, β cannot be greater than 1, as proved in [3].

Theorem 1. Let φ be an admissible loss function, f
φ
λ by (1.3), and μ > λ > 0. Then

∥∥f
φ
λ − f φ

μ

∥∥
K

� μ

2

(
1

λ
− 1

μ

)(∥∥f
φ
λ

∥∥
K

+ ∥∥f φ
μ

∥∥
K

)
� μ

2

(
1

λ
− 1

μ

)(√
2D(λ)

λ
+

√
2D(μ)

μ

)
.

In particular, if with some 0 < γ � 1 we take λt = λ1t
−γ for t � 1, then

dt+1 � 2t
γ
2 −1

√
D

(
λ1t−γ

)
/λ1 � 2t

γ
2 −1

√
φ(0)/λ1.

Theorem 1 will be proved in Section 3. For the least-square regression, the drift error can be estimated by linear
functional analysis and has been done in [23].

2.2. Strong convergence to the regularizing function

Our second main result provides some estimates for the strong approximation of the learning scheme (1.4) mea-
sured by ‖fT +1 − f

φ
λT

‖K in the HK norm. It is an estimation-type error depending on the sample.
Let us demonstrate our general result by considering the special case of hinge loss.

Proposition 1. Let φ(x) = (1 − x)+ and with some λ1, η1 > 0, 0 < γ,α < 1, we take

λt = λ1t
−γ , ηt = η1t

−α ∀t ∈ N. (2.3)

If η1 � 1
2κ2+λ1

and γ < 2
5 , then

Ez ,...,zT

(∥∥fT +1 − f
φ ∥∥2 )

� Cη ,λ ,κT −θ ,
1 λT K 1 1
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where Cη1,λ1,κ is a constant depending on η1, λ1, κ and

θ =
{

α − γ, if γ < α < 2
3 (1 − γ ),

2 − 3γ − 2α − ε, if 2
3 (1 − γ ) � α < 1 − 3

2γ and 0 < ε < 2 − 3γ − 2α.

Proposition 1 follows from Theorem 2 below. Here the convergence rates can be of order O(T ε−2/3) for an arbitrary
small ε > 0 by taking γ to be small enough. The reason for choosing θ in two different cases will be seen in the next
subsection.

To state the rates of strong convergence involving a general loss, we need the following constants measuring the
increment of the (left) derivative of the loss φ.

Definition 5. Denote

N(λ) = sup

{∣∣φ′−(x)
∣∣: |x| � κ2|φ′(0)|

λ

}
, λ > 0. (2.4)

We say that φ has incremental exponent p � 0 if for some N1 > 0 and λ1 > 0 we have

N(λ) � N1

(
1

λ

)p

∀0 < λ � λ1. (2.5)

We say that φ′− is locally Lipschitz at the origin if

M0 := sup
|x|�1

{ |φ′−(x) − φ′(0)|
|x|

}
< ∞. (2.6)

For the least-square loss φ(x) = (1 − x)2, N(λ) = 2 + 4κ2/λ and M0 = 2.
The following explicit rates for the strong approximation will be verified in Section 5 where the constant

Cη1,λ1,κ,p,D0,β can be found explicitly. A brief description for deriving the convergence rate (2.8) below in two differ-
ent cases (2.9) will be given in the next subsection.

Theorem 2. Let {λt , ηt } be given by (2.3). Assume (2.5) and (2.6) for φ. If pγ � α and

η1 � 1

κ2M0 + 2κ2N1λ
−p

1 + λ1
, (2.7)

then ‖ft‖K � κ|φ′(0)|
λt

for each t ∈ N. If moreover (2.2) holds for the triple (K,φ,ρ) and γ < 2
5+4p−β

, then we have

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
� Cη1,λ1,κ,p,D0,βT −θ , (2.8)

where Cη1,λ1,κ,p,D0,β is a constant depending on η1, λ1, κ,p,D0, β and

θ =
{

α − (2p + 1)γ, if (2p + 1)γ < α <
2+(2p−2+β)γ

3 ,

2 − γ (1 − β) − 2(α + γ ) − ε, if 2+(2p−2+β)γ
3 � α < 1 − (3−β)γ

2 .
(2.9)

Here in the second case ε is an arbitrary number satisfying 0 < ε < 2 − (3 − β)γ − 2α.

Consider the special case of hinge loss φ(x) = max{1 − x,0}. We have N(λ) ≡ 1 and M0 = 0, hence p = 0.
Moreover, (2.5) holds with N1 = 1 and D(λ) � φ(0) = 1 for any λ > 0. Thus Theorem 2 with D0 = 1, β = 0 and
p = 0 verifies Proposition 1.

The rate stated in Theorem 2 can be of order T ε−2/3 for an arbitrary small ε > 0 when γ → 0 and α →
2+(2p−2+β)γ

3 . It says that for the error of fT +1 − f
φ
λT

to be small, we need small γ for the regularization parame-
ter. More explicitly, we have

Corollary 1. Under the conditions of Theorem 2, if α = 2+(2p−2+β)γ
3 and 0 < ε <

2−(5+4p−β)γ
3 , we have

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
� Cη1,λ1,κ,p,D0,βT ε+ (5+4p−β)γ−2

3 .
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The above bound for the strong approximation error decays fast when the regularization parameter λt decays slowly
with a small γ .

2.3. Outline of the key analysis

Our key analysis for deriving the bound in Theorem 2 for ‖fT +1 −f
φ
λT

‖K consists of three steps (Sections 4 and 5).

The first step is to bound ‖ft+1 − f
φ
λt

‖K in terms of ‖ft − f
φ
λt

‖K :

Ez1,z2,...,zt

(∥∥ft+1 − f
φ
λt

∥∥2
K

)
� (1 − ηtλt )Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt

∥∥2
K

) + (
2κN(λt )ηt

)2
. (2.10)

This inequality will be proved in Lemma 5. The convexity of the loss function φ plays an important role in this step.
From (2.10) we can see the choice of the index α for ηt = η1t

−α : for the last term of (2.10) to be small, we need
large α; while for the middle term to be small, we should choose small α. This gives some clue why in Proposition 1
we should choose θ in two different cases in order to maximize a power index for the convergence rate.

The second step is to bound ‖ft − f
φ
λt

‖2
K in terms of ‖ft − f

φ
λt−1

‖K and dt = ‖f φ
λt

− f
φ
λt−1

‖K . Since dt is expected

to be much smaller than ‖ft −f
φ
λt−1

‖K , we shall apply an uneven inequality 2ab � a2bs +b2−s with a small s ∈ (0,2)

to 2‖ft − f
φ
λt−1

‖Kdt and obtain

Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt

∥∥2
K

)
�

(
1 + ds

t

)
Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt−1

∥∥2
K

) + d2−s
t + d2

t .

Together with (2.10), this implies Ez1,...,zt (‖ft+1 − f
φ
λt

‖2
K) is bounded by(

1 + ds
t − ηtλt

)
Ez1,...,zt−1

(∥∥ft − f
φ
λt−1

∥∥2
K

) + d2−s
t + d2

t + (
2κN(λt )ηt

)2
. (2.11)

To see how to choose s, we need the decay of dt .

Lemma 1. Let λt = λ1t
−γ for some 0 < γ < 1 and λ1 > 0. If (2.2) holds, then

dt � 4
√
D0λ

β−1
1 t

γ (1−β)
2 −1 ∀t ∈ N. (2.12)

Proof. The assumption (2.2) in connection with Theorem 1 tells us that for any t � 1,

dt+1 � λ1t
−γ

2

(
1

λ1(t + 1)−γ
− 1

λ1t−γ

)
2
√

2D0λ
β−1
1 (t + 1)γ (1−β).

Since (t + 1)γ − tγ = γ ξγ−1 for some ξ ∈ (t, t + 1), we have (t + 1)γ − tγ � tγ−1 and hence

dt+1 �
√

2

t

√
D0λ

β−1
1 (t + 1)

γ (1−β)
2 � 4

√
D0λ

β−1
1 (t + 1)

γ (1−β)
2 −1.

This inequality also holds for t = 0 since d1 = ‖f φ
λ1

‖K �
√

2D(λ1)/λ1 � 4
√
D0λ

β−1
1 . So the desired bound (2.12)

holds true. �
Once the decay of dt is obtained, we can compare the rates of ds

t = O(ts(
γ (1−β)

2 −1)) and ηtλt = O(t−(α+γ )) for the
first term of (2.11). We shall require

s

(
1 − γ (1 − β)

2

)
> α + γ (2.13)

so that the coefficient 1 + ds
t − ηtλt in the first term of (2.11) behaves as 1 − ct−α−γ .

On the other hand, we shall see that N(λt )ηt behaves as O(tpγ−α). So to dominate the last term d2−s
t + d2

t +
(2κN(λt )ηt )

2 of (2.11) by the quantity d2−s
t , we require (2 − s)(1 − γ (1−β)

2 ) � 2(α − pγ ). That is,

s

(
1 − γ (1 − β)

)
� 2

(
1 − γ (1 − β)

)
− (2α − 2pγ ). (2.14)
2 2
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The choice of s in the second step of our key analysis for the bound (2.11) is seen from the restrictions (2.13) and
(2.14). For details, see the proof of Theorem 2.

The third step is to applying the above recursive relation iteratively to get bounds for Ez1,...,zT
(‖fT +1 − f

φ
λT

‖2
K).

Again for the last term of (2.11) to be small, we need large α, but for the product
∏T

t=1(1 + ds
t − ηtλt ) (appearing

after iterations) to be small, we require α to be large. This leads to the choice (2.9) for the learning rate (2.8) presented
in Theorem 2.

2.4. Learning rates

The convergence rate stated in Theorem 2, together with a bound for the regularization error (requiring γ to be
large, a trade-off) yields learning rate of the misclassification error of the fully online algorithm (1.4), taking suitable
choices of the regularization parameter λt and the step size ηt . This is our last main result.

We first present the example of hinge loss again to illustrate the general result.

Corollary 2. Let φ(x) = (1 − x)+ and for some λ1, η1 > 0, 0 < γ,α < 1, we take

λt = λ1t
−γ , ηt = η1t

−α ∀t ∈ N. (2.15)

Assume η1 � 1
2κ2+λ1

and (1.10) holds for the pair (ρ,K). If 0 < γ < 2
5−β

and γ < α <
2−2γ+βγ

3 , then for any T ∈ N

we have

Ez1,...,zT

(
R

(
sgn(fT +1)

) −R(fc)
)
� Cη1,λ1,κ,D0,βT −min{βγ,

α−γ
2 }, (2.16)

where Cη1,λ1,κ,D0,β is a constant depending on η1, λ1, κ,D0 and β .

The general learning rate proved in Section 6 can be stated as follows.

Theorem 3. Let φ be an admissible loss function such that φ′′(0) exists and is positive. Under the assumptions of
Theorem 2 and θ given by (2.9), if γ < 2

5+10p−β
, we have

Ez1,...,zT

(
R

(
sgn(fT +1)

) −R(fc)
)
� C̃φT −min{ βγ

2 , θ
4 − pγ

2 }, (2.17)

where C̃φ is a constant depending on η1, λ1, κ,p,D0, β,N1 and φ.

There has been a vast literature on the partially online algorithm (that is, when λt ≡ λ1 is independent of the
step t). Let us mention some works relating to this paper. In [17], a stochastic gradient method in the Hilbert space
HK is considered. Let SL(HK) be the space of positive definite linear operators on HK , and A :Z → SL(HK) and
B :Z → HK be two maps. To learn a stationary point f ∗ satisfying

Ez∈Z

(
A(z)f ∗ + B(z)

) = 0,

they proposed the learning sequence

ft+1 = ft − ηt

{
A(zt )(ft ) + B(zt )

}
. (2.18)

But the partially online scheme (1.4) involving the general loss function φ is in general nonlinear and is hard to write
in the setting (2.18) except for the least-square loss.

The cumulative loss 1
T

∑T
t=1 φ(ytft (xt )) for partially online algorithms more general than (1.4) has been well

studied in the literature; see, for example, [4,5,9] and references therein. In particular, cumulative loss bounds are
derived for online linear regression with least-square loss in [4]. In Section 6 of [9], for a learning algorithm different
from (1.4), the relative expected instantaneous loss, measuring the prediction ability of fT +1 in linear regression
problem, is analyzed in detail.

A general regularized partially online learning scheme is introduced and analyzed in [10]. Assume the loss func-
tion φ is convex, uniformly Lipschitz continuous, the step size has the form ηt = O(t−1/2), and λ > 0 is fixed. It was
proved there that the average instantaneous risk 1 ∑T

(φ(ytft (xt )) + λ‖ft‖2 ) converges toward the regularized

T t=1 2 K
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generalization error E(f
φ
λ )+ λ

2 ‖f φ
λ ‖2

K with error bound O(T −1/2). This result is about the average instantaneous risk
and λt ≡ λ1.

Different from estimating the cumulative loss bounds as done in many previous results (e.g., [5,10]), the strong
approximation for the partially online algorithm was considered in [26], as done for the least-square regression in [20].
In particular, it provides estimates for the error ‖fT +1 − f

φ
λ ‖K in the HK norm with fixed λt ≡ λ1 > 0, and then

applies them to the analysis of the misclassification error. The learning rates are given in terms of suitable choices of
the regularization parameter λ1 = λ1(T ) depending on T . But the results are not for the fully online algorithm.

Recently, fully online scheme (1.4) has been studied for least-square regression in [23] where φ(x) = (1 − x)2. For
this loss function, learning rates for the approximation of the regression function fρ by fT +1 in spaces L2

ρX
and HK ,

similar to those [13,14,20,21] for off-line schemes, are derived. Our error bounds stated in Theorems 2 and 3 are for
classification with a general convex loss function including the least-square loss as a special example. So our setting
is more general.

3. Estimating the drift error

In this section, we prove Theorem 1 which estimates ‖f φ
λ − f

φ
μ ‖K (with λ,μ > 0) for the drift error and plays an

important role in deriving satisfactory learning rates.
We first prove the theorem for differentiable loss functions. Under this differentiability assumption, it was observed

in [26] by taking a variational derivative of the functional (regularized generalization error) given in (1.3) that the
minimizer f

φ
λ of the functional satisfies∫

Z

φ′(yf φ
λ (x)

)
yKx dρ + λf

φ
λ = 0. (3.1)

Lemma 2. Let μ > λ > 0 and φ be a differentiable convex loss function. Then∣∣f φ
λ − f φ

μ

∥∥
K

� μ

2

(
1

λ
− 1

μ

){∥∥f
φ
λ

∥∥
K

+ ∥∥f φ
μ

∥∥
K

}
.

Proof. From (3.1), we know that

f
φ
λ − f φ

μ = 1

μ

∫
Z

φ′(yf φ
μ (x)

)
yKx dρ − 1

λ

∫
Z

φ′(yf φ
λ (x)

)
yKx dρ.

Combining with the reproducing property (1.1), we know ‖f φ
λ − f

φ
μ ‖2

K = 〈f φ
λ − f

φ
μ ,f

φ
λ − f

φ
μ 〉K can be expressed as

∥∥f
φ
λ − f φ

μ

∥∥2
K

= 1

μ

∫
Z

φ′(yf φ
μ (x)

)
y
(
f

φ
λ − f φ

μ

)
(x)dρ − 1

λ

∫
Z

φ′(yf φ
λ (x)

)
y
(
f

φ
λ − f φ

μ

)
(x)dρ. (3.2)

Since φ is a convex function on R, we know that

φ′(a)(b − a) � φ(b) − φ(a), ∀a, b ∈ R. (3.3)

Thus

φ′(yf φ
μ (x)

)(
yf

φ
λ (x) − yf φ

μ (x)
)
� φ

(
yf

φ
λ (x)

) − φ
(
yf φ

μ (x)
)

and

φ′(yf φ
λ (x)

)(
yf φ

μ (x) − yf
φ
λ (x)

)
� φ

(
yf φ

μ (x)
) − φ

(
yf

φ
λ (x)

)
.

Putting these two inequalities into (3.2), we get

∥∥f
φ
λ − f φ

μ

∥∥2
K

�
(

1

λ
− 1

μ

)(
E
(
f φ

μ

) − E
(
f

φ
λ

))
. (3.4)

For μ > λ > 0, we know that 1 − 1 > 0 and hence E(f
φ
μ ) − E(f

φ
) � 0.
λ μ λ
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From the definition of f
φ
μ , we see that E(f

φ
μ ) + μ

2 ‖f φ
μ ‖2

K − (E(f
φ
λ ) + μ

2 ‖f φ
λ ‖2

K) � 0. It follows that

E
(
f φ

μ

) − E
(
f

φ
λ

)
� μ

2

(∥∥f
φ
λ

∥∥2
K

− ∥∥f φ
μ

∥∥2
K

) = μ

2

(∥∥f
φ
λ

∥∥
K

− ∥∥f φ
μ

∥∥
K

)(∥∥f
φ
λ

∥∥
K

+ ∥∥f φ
μ

∥∥
K

)
. (3.5)

Note that ‖f φ
λ ‖K − ‖f φ

μ ‖K � ‖f φ
λ − f

φ
μ ‖K . Then the desired inequality follows from (3.4). �

Now we can prove Theorem 1.

Proof of Theorem 1. For the admissible loss function φ, we define for each 0 < ε � 1 a convex, differentiable
function on R by

φε(x) =
1∫

0

φ(x − εθ)dθ = 1

ε

x∫
x−ε

φ(u)du.

It is a differentiable admissible loss function and the conclusion of Lemma 2 holds true.
We define, for 0 < ε � 1, E (ε)(f ) = ∫

Z
φε(yf (x))dρ and f

(ε)
λ = arg minf ∈HK

E (ε)(f ) + λ
2 ‖f ‖2

K .
An intermediate step in the proof of Lemma 2 of [26] shows that there exists a sequence {εj > 0}∞j=1 such that

limj→∞ εj = 0 and for each ζ ∈ {λ,μ}, the sequence {f (εj )

ζ } is uniformly bounded in HK (with respect to j ) and

converges to f
φ
ζ weakly. Moreover, E(f

φ
ζ ) = limj→∞ E (εj )(f

(εj )

ζ ) and

E
(
f

φ
ζ

) + ζ

2

∥∥f
φ
ζ

∥∥2
K

= limj→∞
{
E (εj )

(
f

(εj )

ζ

) + ζ

2

∥∥f
(εj )

ζ

∥∥2
K

}
.

It follows that limj→∞‖f (εj )

ζ ‖K � ‖f φ
ζ ‖K . The weak convergence implies that∥∥f

φ
λ − f φ

μ

∥∥2
K

= lim
j→∞

〈
f

(εj )

λ − f
(εj )
μ , f

φ
λ − f φ

μ

〉
K

� limj→∞
∥∥f

(εj )

λ − f
(εj )
μ

∥∥
K

∥∥f
φ
λ − f φ

μ

∥∥
K

.

Applying Lemma 2 to the modified loss function φεj
yields

∥∥f
(εj )

λ − f
(εj )
μ

∥∥
K

� μ

2

(
1

λ
− 1

μ

){∥∥f
(εj )

λ

∥∥
K

+ ∥∥f
(εj )
μ

∥∥
K

}
.

Thus, by letting j → ∞, we see that∥∥f
φ
λ − f φ

μ

∥∥
K

� limj→∞
∥∥f

(εj )

λ − f
(εj )
μ

∥∥
K

� μ

2

(
1

λ
− 1

μ

){∥∥f
φ
λ

∥∥
K

+ ∥∥f φ
μ

∥∥
K

}
.

Using (2.1), we know that

∥∥f
φ
λ

∥∥
K

�
√

2D(λ)

λ
,

∥∥f φ
μ

∥∥
K

�
√

2D(μ)

μ
.

So the first statement follows.
The second statement follows by observing (t + 1)γ − tγ � γ tγ−1 � tγ−1 and that D is a nondecreasing function.

This verifies Theorem 1. �
4. Analyzing the remainder for online schemes

The first two steps in getting the convergence and rates of convergence for the fully online scheme are to analyze
the remainder ft+1 − f

φ
λt

. To this end, we need to bound the learning sequence {ft } first. The following result can be
proved following the same line of reasoning as [26]. A detailed proof is given in Appendix A.

Proposition 2. Assume that φ′− is locally Lipschitz at the origin. Define {ft } by (1.4) and denote

M(λ) = sup

{ |φ′−(x) − φ′(0)|
: |x| � κ2|φ′(0)|}

, λ > 0. (4.1)
|x| λ
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If

ηt

(
κ2M(λt ) + λt

)
� 1 ∀t � 1, (4.2)

then

‖ft‖K � κ|φ′(0)|
λt

. (4.3)

Remark 1. The bound (4.3) seems artificial since the definition of ft depends only on λ1, . . . , λt−1, not on λt . Actually
the proof of Proposition 2 ensures a tighter bound ‖ft‖K � κ|φ′(0)|

λt−1
for any t � 2 which implies (4.3) by our assumption

λt � λt−1. But for our error analysis we only need the bound (4.3).

The following relation between the functions M(λ) and N(λ) will be used.

Lemma 3. For any λ > 0, we have

M(λ) � max
{
M0,N(λ) + ∣∣φ′(0)

∣∣} � max
{
M0,2N(λ)

}
.

Proof. When |x| � 1, the definition (2.6) of M0 yields
|φ′−(x)−φ′(0)|

|x| � M0.

When 1 < |x| � κ2|φ′(0)|
λ

, we have
|φ′−(x)−φ′(0)|

|x| � |φ′−(x)−φ′(0)| � |φ′−(x)|+|φ′(0)|. So the desired bound follows
from the definition (2.4): |φ′−(x)| � N(λ). �

The following are some commonly used examples of loss functions (e.g., [2,6,11,12,27]). The constants N(λ) and
M(λ) are estimated.

Example 2. (1) For the least-square loss φ(x) = (1 − x)2, we have M(λ) ≡ 2 and N(λ) = 2 + 4κ2

λ
.

(2) For the q-norm SVM loss φ(x) = (1 − x)
q
+ with 1 � q � 2, we have M(λ) � 4 and N(λ) = q(1 + κ2q/λ)q−1.

(3) For the q-norm SVM loss with q > 2, we have M(λ) � q(q −1)(1+κ2q/λ)q−2 and N(λ) = q(1+κ2q/λ)q−1.
(4) For the exponential loss φ(x) = e−x , we have N(λ) = eκ2/λ and M(λ) � eκ2/λ.

Proof. (1) Note the least-square loss φ is twice continuously differentiable, φ′(x) = 2(x − 1) and φ′′ ≡ 2. Then we
have the desired expressions.

(2) When 1 � q � 2, the q-norm SVM loss φ(x) = (1 − x)
q
+ has φ′−(x) = −q(1 − x)

q−1
+ . The expression for N(λ)

follows, which also works for q > 2. We have M(λ) � 4 for all λ > 0 since

|φ′−(x) − φ′(0)|
|x| �

⎧⎨
⎩

‖φ′′‖L∞[0,1/2] � 4, if x ∈ [0,1/2],
|φ′(0)|/|x| � 4, if x > 1/2,

‖φ′′‖L∞[−∞,0] � 2, if x < 0.

(3) When q > 2, we have φ′(0) = −q and φ′′−(x) = q(q − 1)(1 − x)
q−2
+ . So we find that M(λ) � q(q − 1)(1 +

κ2q/λ)q−2.
(4) For the exponential loss, we have φ′(x) = −e−x and φ′′(x) = e−x . Then we have N(λ) = eκ2/λ and M(λ) �

‖φ′′‖L∞[−κ2|φ′(0)|/λ,κ2|φ′(0)|/λ] = eκ2/λ. �
For the error analysis, we also need the following relation derived in [26].

Lemma 4. Let φ be an admissible loss function and λ > 0. Then

λ

2

∥∥f − f
φ
λ

∥∥2
K

�
{
E(f ) + λ

2
‖f ‖2

K

}
−

{
E
(
f

φ
λ

) + λ

2

∥∥f
φ
λ

∥∥2
K

}
∀f ∈HK. (4.4)

We are in a position to provide the first step of the key analysis: estimating ‖ft+1 −f
φ‖K in terms of ‖ft −f

φ‖K .
λt λt
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Lemma 5. If the bound (4.3) is valid for some t ∈ N, then (2.10) holds true.

Proof. Denote Gt := φ′−(ytft (xt ))ytKxt + λtft . The online scheme (1.4) can be written as ft+1 = ft − ηtGt . Then∥∥ft+1 − f
φ
λt

∥∥2
K

= ∥∥ft − f
φ
λt

∥∥2
K

+ η2
t ‖Gt‖2

K + 2ηt

〈
Gt,f

φ
λt

− ft

〉
K

. (4.5)

Applying (1.1) and (3.3) to part of the last term of (4.5), we see that the inner product 〈φ′−(ytft (xt ))ytKxt , f
φ
λt

−
ft 〉K equals to

φ′−
(
ytft (xt )

)(
ytf

φ
λt

(xt ) − ytft (xt )
)
� φ

(
ytf

φ
λt

(xt )
) − φ

(
ytft (xt )

)
.

For the other part, we have〈
ft , f

φ
λt

− ft

〉
K

� 1

2

∥∥f
φ
λt

∥∥2
K

+ 1

2
‖ft‖2

K − ‖ft‖2
K = 1

2

∥∥f
φ
λt

∥∥2
K

− 1

2
‖ft‖2

K.

Thus the last term of (4.5) can be bounded as〈
Gt,f

φ
λt

− ft

〉
K

�
[
φ
(
ytf

φ
λt

(xt )
) + λt

2

∥∥f
φ
λt

∥∥2
K

]
−

[
φ
(
ytft (xt )

) + λt

2
‖ft‖2

K

]
.

Since ft depends on {z1, z2, . . . , zt−1} but not on zt , it follows that

Ezt

(〈
Gt,f

φ
λt

− ft

〉
K

)
�

[
E
(
f

φ
λt

) + λt

2

∥∥f
φ
λt

∥∥2
K

]
−

[
E(ft ) + λt

2
‖ft‖2

K

]
.

This in connection with Lemma 4 implies

Ez1,z2,...,zt

(〈
Gt,f

φ
λt

− ft

〉
K

)
� −λt

2
Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt

∥∥2
K

)
.

By (4.3) and the definition of N(λ), we have |φ′−(ytft (xt ))| � N(λt ). Hence

‖Gt‖K � κN(λt ) + λt

κ|φ′(0)|
λt

� 2κN(λt ).

The last holds because |φ′(0)| � N(λt ). Therefore, we get (2.10) from (4.5). �
Now we can analyze the remainder ft+1 − f

φ
λt

. Recall Definition 3 for the drift error dt . For simplicity, denote∏T
j=T +1(1 + ds

j − ηjλj ) = 1 and
∑T

j=T +1(d
s
j − ηjλj ) = 0.

Lemma 6. Let 0 < s < 2. Assume that for some t0 ∈ N, the bound (4.3) and ηtλt < 1 hold for t � t0. Then for T � t0,
we have

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
�

T∏
t=t0

(
1 + ds

t − ηtλt

)
Ez1,...,zt0−1

(∥∥ft0 − f
φ
λt0−1

∥∥2
K

)

+
T∑

t=t0

(
d2−s
t + d2

t + (
2κN(λt )ηt

)2) T∏
j=t+1

(
1 + ds

j − ηjλj

)
. (4.6)

Proof. Let t � t0. Recall that ‖f φ
λt−1

− f
φ
λt

‖K = dt . Then ‖ft − f
φ
λt

‖2
K � ‖ft − f

φ
λt−1

‖2
K + 2‖ft − f

φ
λt−1

‖Kdt + d2
t .

Applying the elementary inequality 2ab = 2abs/2b1−s/2 � a2bs + b2−s (a, b � 0) to a = ‖ft − f
φ
λt−1

‖K and b = dt ,
we know that

Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt

∥∥2
K

)
�

(
1 + ds

t

)
Ez1,z2,...,zt−1

(∥∥ft − f
φ
λt−1

∥∥2
K

) + d2−s
t + d2

t .

Using this bound to (2.10) and noticing the inequalities (1 − ηtλt )(1 + ds
t ) � 1 + ds

t − ηtλt , 1 − ηtλt � 1, we obtain

Ez1,...,zt

(∥∥ft+1 − f
φ
λt

∥∥2
K

)
�

(
1 + ds

t − ηtλt

)
Ez1,...,zt−1

(∥∥ft − f
φ
λt−1

∥∥2
K

) + d2−s
t + d2

t + (
2κN(λt )ηt

)2
.

Applying this recursive relation iteratively for t = T ,T − 1, . . . , t0, we see that Ez1,...,zT
(‖fT +1 − f

φ
λT

‖2
K) is bounded

by (4.6). This proves the statement. �
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5. Convergence rates for the strong approximation

Now we turn to the last step of getting convergence rates for the strong approximation. We need the following
lemma which modifies an inequality given in [26] and [17].

Lemma 7. Let ν > 0, 0 < p1 < p2 < 1, T > t0 ∈ N. We have

T∑
j=t0

j−p2 exp

{
−ν

T∑
i=j+1

i−p1

}
� Cν,p1,p2T

p1−p2 , (5.1)

where Cν,p1,p2 is the constant Cν,p1,p2 := 1 + 6
ν

+ 2p2+1(1−p1)

eν(1−2p1−1)(1−p2)
.

Proof. Denote I = ∑T −1
j=t0

j−p2 exp{−ν
∑T

i=j+1 i−p1}. Observe that for u ∈ [i, i + 1] we have i−p1 � u−p1 . Then∑T
i=j+1 i−p1 �

∫ T +1
j+1 u−p1 du = (T +1)1−p1

1−p1
− (j+1)1−p1

1−p1
. It follows that

I � exp

{
− ν

1 − p1
(T + 1)1−p1

} T −1∑
j=t0

j−p2 exp

{
ν(j + 1)1−p1

1 − p1

}
.

For x ∈ [j + 1, j + 2], we have (j + 1)1−p1 � x1−p1 and x � 3j which implies (x/j)p2 � 3p2 and hence j−p2 �
3x−p2 . So we can bound j−p2 exp

{ ν(j+1)1−p1

1−p1

}
by

∫ j+2
j+1 3x−p2 exp

{
νx1−p1

1−p1

}
dx. Hence

I � exp

{
− ν

1 − p1
(T + 1)1−p1

} T +1∫
t0+1

3

xp2
exp

{
νx1−p1

1 − p1

}
dx. (5.2)

Decompose the above integral into two parts. For the part with large x on the interval [(T + 1)/2, T + 1], we see
from the bound xp1−p2 �

(
T +1

2

)p1−p2 that

T +1∫
(T +1)/2

3

xp2
exp

{
νx1−p1

1 − p1

}
dx � 3

(
T + 1

2

)p1−p2
T +1∫

(T +1)/2

x−p1 exp

{
νx1−p1

1 − p1

}
dx.

The last integral equals 1
ν

exp
{

ν(T +1)1−p1

1−p1

}− 1
ν

exp
{ ν((T +1)/2)1−p1

1−p1

}
� 1

ν
exp

{
ν(T +1)1−p1

1−p1

}
. This in connection with the

bound 2p2−p1 � 2 yields

T +1∫
(T +1)/2

3

xp2
exp

{
νx1−p1

1 − p1

}
dx � 6

ν
(T + 1)p1−p2 exp

{
ν(T + 1)1−p1

1 − p1

}
. (5.3)

For the part with small x on the interval [t0 + 1, (T + 1)/2], we have

(T +1)/2∫
t0+1

3

xp2
exp

{
νx1−p1

1 − p1

}
dx � exp

{
ν

1 − p1

(
T + 1

2

)1−p1
} (T +1)/2∫

t0+1

3

xp2
dx

which is bounded (by computing the integral) by exp
{

ν(T +1)1−p1

21−p1 (1−p1)

} 3
1−p2

(
T +1

2

)1−p2 . This in connection with (5.2) and

(5.3) implies

I � 6

ν
(T + 1)p1−p2 + 3

1 − p2

(
T + 1

2

)1−p2

exp

{
−ν(1 − 2p1−1)

1 − p1
(T + 1)1−p1

}
.

Now for bounding the last term, we need an elementary inequality involving an arbitrary c > 0:

exp{−cx} � 1
x−1 ∀x > 0. (5.4)
ec
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This inequality is verified by considering the function f (x) = x exp{−cx} which is maximized at x = 1
c
. Choose

c = ν(1−2p1−1)
1−p1

and x = (T + 1)1−p1 in (5.4). Then

exp

{
−ν(1 − 2p1−1)

1 − p1
(T + 1)1−p1

}
� 1 − p1

eν(1 − 2p1−1)
(T + 1)p1−1.

Thus I �
( 6

ν
+ 2(p2+1)(1−p1)

eν(1−2p1−1)(1−p2)

)
(T + 1)p1−p2 and the desired inequality follows. �

We are in a position to prove Theorem 2 about convergence rates of the error ‖fT +1 − f
φ
λT

‖K stated in Section 2.
Note that

1 − u � e−u ∀u ∈ R. (5.5)

Proof of Theorem 2. We first claim that (4.2) holds. This follows from Lemma 3 together with the restrictions (2.7)
on η1 and pγ � α:

ηt

(
κ2M(λt ) + λt

)
� η1t

−α
(
κ2(M0 + 2N1λ

−p
t

) + λt

)
� η1t

−α
(
κ2M0 + 2κ2N1λ

−p

1 tpγ + λ1t
−γ

)
� η1

(
κ2M0 + 2κ2N1λ

−p

1 + λ1
)
� 1.

Then by Proposition 2, we see that ‖ft‖K � κ|φ′(0)|
λt

for each t � 1.
The restrictions (2.7) on η1 gives η1λ1 < 1, and hence ηtλt < 1 for t � 1. In Lemma 6 we take t0 = 1 and according

to a requirement (2.13) and (2.14) we choose

s =
{

2 − 2α−2pγ
1−γ (1−β)/2 , if 2(1 − γ (1−β)

2 ) − (2α − 2pγ ) > α + γ,

α+γ+ε
1−γ (1−β)/2 , if 2(1 − γ (1−β)

2 ) − (2α − 2pγ ) � α + γ,
(5.6)

where in the second case, ε is an arbitrary number satisfying 0 < ε < 2(1 − γ (1−β)
2 ) − 2(α + γ ). It can be easily seen

that in either case, (2.13) holds and s < 2. Then the error bound (4.6) holds for T > 1. But ft0 = f
φ
λt0−1

= 0. So (4.6)

becomes

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
�

T∑
t=1

(
d2−s
t + d2

t + (
2κN(λt )ηt

)2) T∏
j=t+1

(
1 + ds

j − ηjλj

)
. (5.7)

Apply Lemma 1, we see that

ds
j �

(
16D0λ

β−1
1

)s/2 � 1 + 16D0λ
β−1
1 ∀j ∈ N. (5.8)

Use this uniform bound for small j and then apply (2.13) and Lemma 1. We see that

ds
j � 4s

(
D0λ

β−1
1

)s/2
j s(

γ (1−β)
2 −1) � 1

2
ηjλj = 1

2
η1λ1j

−(α+γ )

for every j � Js , where Js is a positive integer satisfying

J
s(1− γ (1−β)

2 )−(α+γ )
s � 22s+1(D0λ

β−1
1

)s/2
/(η1λ1).

One can take Js to be the smallest integer greater than ((32 + 32D0λ
β−1
1 )/(η1λ1))

1
τ with

τ =
{

2 − 3α − (2 − 2p − β)γ, if 2(1 − γ (1−β)
2 ) − (2α − 2pγ ) > α + γ,

ε, if 2(1 − γ (1−β)
2 ) − (2α − 2pγ ) � α + γ.

(5.9)

Since 1 − 1
2ηjλj � 1

2 , we know that for any 1 � t < Js ,

T∏ (
1 + ds

j − ηjλj

)
�

Js∏ (
1 + ds

j

) T∏ (
1 − 1

2
ηjλj

)
� 2Js

Js∏ (
1 + ds

j

) T∏ (
1 − 1

2
ηjλj

)
.

j=t+1 j=t+1 j=Js+1 j=t+1 j=t+1
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Applying (5.8) for t + 1 � j � Js , the first term above can be bounded as
∏Js

j=t+1(1 + ds
j ) � (2 + 16D0λ

β−1
1 )Js . This

in connection with (5.5) implies that for any t � 1,

T∏
j=t+1

(
1 + ds

j − ηjλj

)
�

(
4 + 32D0λ

β−1
1

)Js exp

{
−1

2
η1λ1

T∑
j=t+1

j−(α+γ )

}
. (5.10)

It provides an estimate for the last part of (5.7).
Next we estimate the other part of (5.7). For t � 1, we have

N(λt )ηt � N1
(
λ1t

−γ
)−p

η1t
−α � N1λ

−p

1 η1t
pγ−α.

Thus, d2−s
t + d2

t + (2κN(λt−1)ηt )
2 is bounded by

(
4
√
D0λ

β−1
1

)2−s
t (2−s)(

γ (1−β)
2 −1) + 16D0λ

β−1
1 tγ (1−β)−2 + (

2κN1λ
−p

1 η1
)2

t2pγ−2α.

According to (5.6), we see that the first term above dominates since{
(2 − s)(1 − γ (1−β)

2 ) = 2α − 2pγ, if 2(1 − γ (1−β)
2 ) − (2α − 2pγ ) > α + γ,

(2 − s)(1 − γ (1−β)
2 ) < 2α − 2pγ, if 2(1 − γ (1−β)

2 ) − (2α − 2pγ ) � α + γ.

Therefore, if we denote p2 = (2 − s)(1 − γ (1−β)
2 ) and the constant

C̃′
s := 16 + 32D0λ

β−1
1 + (

2κN1λ
−p

1 η1
)2

,

then d2−s
t + d2

t + (2κN(λt−1)ηt )
2 � C̃′

s t
−p2 . This in connection with (5.7) and (5.10) yields

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
�

(
4 + 32D0λ

β−1
1

)Js C̃′
s

T∑
t=1

t−p2 exp

{
−1

2
η1λ1

T∑
j=t+1

j−(α+γ )

}
. (5.11)

Observe from the choice (5.6) of s that

p2 − (α + γ ) =
{

α − (2p + 1)γ, if 2(1 − γ (1−β)
2 ) − (2α − 2pγ ) > α + γ,

2 − γ (1 − β) − 2(α + γ ) − ε, if 2(1 − γ (1−β)
2 ) − (2α − 2pγ ) � α + γ.

This power exponent is positive and such an α exists because the restriction (5 + 4p − β)γ < 2 ensures (2p + 1)γ <

α <
2+(2p−2+β)γ

3 in the first case, and 2+(2p−2+β)γ
3 � α < 1 − (3−β)γ

2 with 0 < ε < 2 − γ (1 − β) − 2(α + γ ) in the
second case. Then by applying Lemma 7, we see that

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
�

(
4 + 32D0λ

β−1
1

)Js C̃′
sC 1

2 η1λ1,α+γ,p2
T α+γ−p2 . (5.12)

This completes the proof of Theorem 2 since α + γ − p2 = −θ . �
6. Total error bounds and learning rates

To demonstrate our method, let us first prove Example 1.

Proof of Example 1. First we derive the decay (2.2). Observe that the hinge loss φ is uniformly Lipschitz satisfying
|φ(u) − φ(v)| � |u − v| for any u,v ∈ R. Then for any functions f,g on X,

∣∣E(f ) − E(g)
∣∣ =

∣∣∣∣∣
∫
Z

φ
(
yf (x)

) − φ
(
yg(x)

)
dρ

∣∣∣∣∣ � ‖f − g‖L1
ρX

. (6.1)

This in connection with the assumption (1.10) and the fact that f
φ
ρ = fc verified in [24] implies that (2.2) holds true.

Then we apply Theorem 2 to estimate ‖fT +1 − f
φ
λT

‖2
K . We only need to determine the indices. By (2.15) we

have γ = 1 and α = 1 − ε. The left derivative φ′− of the hinge loss is given by φ′−(x) = −1 for x � 1 and 0 for
4 2
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x > 1. So N(λ) ≡ 1 and (2.5) holds with N1 = 1 and p = 0. Moreover, M0 = 0. So the restriction (2.7) is the same
as 0 < η1 � 1

2κ2+λ1
. Also, we have γ = 1

4 < 2
5+4p−β

. The index α = 1
2 − ε corresponds to the first case of (2.9).

Therefore, by the bound (2.8) in Theorem 2, we have

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
� Cη1,λ1,κ,p,D0,βT ε− 1

4 . (6.2)

According to (1.1) and (6.1), we have E(fT +1) − E(f
φ
λT

) � ‖fT +1 − f
φ
λT

‖∞ � κ‖fT +1 − f
φ
λT

‖K . It follows from
the Schwarz inequality and (6.2) that

Ez1,...,zT

(
E(fT +1) − E

(
f

φ
λT

))
� κ

√
Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥2
K

)
� κ

√
Cη1,λ1,κ,p,D0,βT

ε
2 − 1

8 .

Also, we have E(f
φ
λT

) − E(fc) � D(λT ) since fc is a minimizer of E(f ). Thus we get a bound for the excess gener-
alization error

Ez1,...,zT

(
E(fT +1) − E(fc)

)
� κ

√
Cη1,λ1,κ,p,D0,βT

ε
2 − 1

8 +D0λ
β

1 T − β
4 � CεT

−min{ β
4 , 1

8 − ε
2 },

where Cε = κ
√

Cη1,λ1,κ,p,D0,β +D0λ
β

1 .

An important relation concerning the hinge loss is the one [27] between the excess misclassification error and the
excess generalization error given for any measurable function f :X → R as

R
(
sgn(f )

) −R(fc) � E(f ) − E(fc). (6.3)

Then our conclusion of Example 1 follows. �
Turn to the general loss φ. To derive rates for the excess misclassification error, we show how the strong conver-

gence of fT +1 to f
φ
λT

and the regularization error yield the excess generalization error.

Lemma 8. Under the assumptions of Theorem 2 and θ given by (2.9), if γ < 2
5+10p−β

, then

Ez1,...,zT

(
E(fT +1) − E

(
f φ

ρ

))
� C̃T −min{βγ, θ

2 −pγ },

where C̃ is a constant depending on η1, λ1, κ,p,D0, β and N1.

Proof. Decompose E(fT +1) − E(f
φ
ρ ) as E(fT +1) − E(f

φ
λT

) + E(f
φ
λT

) − E(f
φ
ρ ). Observe that E(f

φ
λT

) − E(f
φ
ρ ) �

D(λT ) � D0λ
β
T .

By Theorem 2, ‖fT +1‖∞ � κ‖fT +1‖K � κ2|φ′(0)|
λT +1

. From the definition of D(λT ), we see that

∥∥f
φ
λT

∥∥∞ � κ
∥∥f

φ
λT

∥∥
K

� κ
√

2D(λT )/λT � κ

√
2D0λ

β
T /λT =

√
2D0λ

β+1
2

1 T − γ (β+1)
2

κ|φ′(0)|
κ2|φ′(0)|

λT

.

It follows that ‖f φ
λT

‖∞ � κ2|φ′(0)|
λT

� κ2|φ′(0)|
λT +1

when T � λ
1
γ

1

( √
2D0

κ|φ′(0)|
) 2

γ (β+1) . Under this restriction of T , we know that

for any x ∈ X and y ∈ Y , the numbers yfT +1(x) and yf
φ
λT

(x) are both bounded by κ2|φ′(0)|
λT +1

. Thus by the definition of
N(λT +1), we have∣∣φ(

yfT +1(x)
) − φ

(
yf

φ
λT

(x)
)∣∣ � N(λT +1)

∣∣yfT +1(x) − yf
φ
λT

(x)
∣∣ � κN(λT +1)

∥∥fT +1 − f
φ
λT

∥∥
K

.

This in connection with the assumption N(λT +1) � N1λ
−p

1 (T + 1)pγ � 2pγ N1λ
−p

1 T pγ implies

E(fT +1) − E
(
f

φ
λT

) =
∫
Z

φ
(
yfT +1(x)

) − φ
(
yf

φ
λT

(x)
)

dρ � κ2pγ N1λ
−p

1 T pγ
∥∥fT +1 − f

φ
λT

∥∥
K

.

Therefore, by Theorem 2, we have

Ez1,...,zT

(
E(fT +1) − E

(
f φ

ρ

))
� κ2pN1λ

−p
√

Cη ,λ ,κ,p,D ,βT pγ− θ
2 +D0λ

β
T −βγ .
1 1 1 0 1
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The requirement θ
2 − pγ > 0 restricts γ by (5 + 10p − β)γ < 2. This verifies the desired bound for the excess

generalization error. �
We can now prove the learning rates for the online algorithm (1.8) with the hinge loss.

Proof of Corollary 2. The assumption (1.10) in connection with (6.1) implies D(λ) � D0λ
β . Note that (2.5) holds

with p = 0. Then our conclusion follows from (6.3) and Lemma 8 by considering the first case of (2.9). �
Proof of Theorem 3. Since φ is an admissible loss function with φ′′(0) > 0, it was shown in [3] that there exists a
constant depending cφ only on φ such that for any measurable function f : X → R,

R
(
sgn(f )

) −R(fc) � cφ

√
E(f ) − E

(
f

φ
ρ

)
. (6.4)

Then the stated error bound follows from Lemma 8. This proves Theorem 3. �
To demonstrate further, we apply our main results to the q-norm SVM loss φ(x) = (1 − x)

q
+ with q > 1. It satisfies

φ′′(0) > 0. According to the expression of N(λ), we see that p = q − 1. So Theorem 3 yields the following learning
rates.

Corollary 3. Let φ(x) = (1 − x)
q
+ with q > 1. Assume (2.2) for the pair (K,ρ). Let γ < 2

10q−5−β
and (2q − 1)γ <

α <
2+(2q−4+β)γ

3 . If η1 � 1
4κ2q2+2κ2q(1+κ2q/λ1)

q−1+λ1
, then

Ez1,...,zT

(
R

(
sgn(fT +1)

) −R(fc)
) = O

(
T −min{ βγ

2 ,
α−(4q−3)γ

4 }).
Finally, let us state a general result for the strong approximation. The proof follows from Lemma 6, as that for

Theorem 2.

Proposition 3. Let the pairs {(ηt , λt )}∞t=1 satisfy

∞∑
t=1

ηtλt = +∞, lim
t→∞ηt = 0, lim

t→∞λt = 0

and the following restrictions (with respect to {dt ,N(λt )})

lim
t→∞

dt

ηtλt

= 0, lim
t→∞

ηt (N(λt ))
2

λt

= 0.

If φ′− is locally Lipschitz at the origin and ηt (κ
2M(λt ) + λt ) � 1 for all t � 1, then

Ez1,...,zT

(∥∥fT +1 − f
φ
λT

∥∥
K

) → 0 as T → +∞.

Appendix A. Proof of Proposition 2

We prove Proposition 2 by induction on t ∈ N.
The case t = 1 is trivial since f1 = 0. Suppose that (4.3) holds for t . Consider ft+1. It can be expressed as

ft+1 = (1 − ηtλt )ft − ηt

[
φ′−

(
ytft (xt )

) − φ′(0)
]
ytKxt − ηtφ

′(0)ytKxt .

Write the middle term as[
φ′−

(
ytft (xt )

) − φ′(0)
]
ytKxt = φ′−(ytft (xt )) − φ′(0)

ytft (xt )
Ltft ,

where Lt :HK → HK is a self-adjoint, rank-one, positive linear operator given by Ltg = 〈g,Kxt 〉KKxt and we
have used the reproducing property for ft (xt )Kxt = 〈ft ,Kxt 〉KKxt . The operator norm of Lt can be bounded as
‖Lt‖HK→HK

� κ2 since

〈Ltg,g〉K = ∣∣〈g,Kxt 〉K
∣∣2 � κ2‖g‖2 ∀g ∈HK.
K
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The local Lipschitz condition tells us that
φ′−(yt ft (xt ))−φ′(0)

yt ft (xt )
is well defined (set as zero when ft (xt ) = 0). It is bounded

by M(λt ), since |ytft (xt )| � κ‖ft‖K � κ2 |φ′(0)|
λt

by our induction hypothesis. The convexity of φ implies that φ′− is
nondecreasing. Hence

0 �
φ′−(ytft (xt )) − φ′(0)

ytft (xt )
� M(λt ).

Therefore,
φ′−(yt ft (xt ))−φ′(0)

yt ft (xt )
Lt is a self-adjoint, positive linear operator on HK and its norm is bounded by κ2M(λt ).

Since ηtκ
2M(λt ) � 1 −ηtλt , the linear operator Tt := (1 −ηtλt )I −ηt

φ′−(yt ft (xt ))−φ′(0)

yt ft (xt )
Lt is self-adjoint, positive and

Tt � (1 − ηtλt )I . It follows that∥∥(1 − ηtλt )ft − ηt

[
φ′−

(
ytft (xt )

) − φ′(0)
]
ytKxt

∥∥
K

= ‖Ttft‖ � (1 − ηtλt )‖ft‖K.

Hence

‖ft+1‖K � (1 − ηtλt )‖ft‖K + κηt

∣∣φ′(0)
∣∣.

This in connection with the induction on ‖ft‖K implies that

‖ft+1‖K � (1 − ηtλt )
κ|φ′(0)|

λt

+ κηt

∣∣φ′(0)
∣∣ � κ|φ′(0)|

λt+1
.

Then the conclusion of Proposition 2 follows. �
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