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Abstract

In this paper we consider fully online learning algorithms for classification generated from Tikhonov regularization schemes
associated with general convex loss functions and reproducing kernel Hilbert spaces. For such a fully online algorithm, the regu-
larization parameter in each learning step changes. This is the essential difference from the partially online algorithm which uses
a fixed regularization parameter. We first present a novel approach to the drift error incurred by the change of the regularization
parameter. Then we estimate the error of the learning process for the strong approximation in the reproducing kernel Hilbert space.
Finally, learning rates are derived from decays of the regularization error. The convexity of the loss function plays an important
role in our analysis. Concrete learning rates are given for the hinge loss and the support vector machine g-norm loss.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper aims at fully online binary classification algorithms generated from Tikhonov regularization schemes
associated with general convex loss functions and reproducing kernel Hilbert spaces.

A binary classification algorithm produces a binary classifier C: X — Y which divides the input space X (a metric
space such as a subset of R") into two classes represented by ¥ = {1, —1}. The classifier C makes a prediction y € Y
for each point x € X (a vector x € R" with n components corresponding to n practical measurements). A real valued
function f: X — R can be used to generate a classifier C(x) = sgn(f (x)) where

1’ if 20’
sgn(f (x)) = { —1. ifﬁg <0.
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A loss function ¢ : R — R is often used for the real valued function f, to measure the local error ¢ (yf (x)) suffered
from the use of sgn( f) as a model for the process producing y at x € X.

A Mercer kernel K : X x X — R is a continuous and symmetric function which is positive semidefinite, i.e., for
any finite set of points {xi, ..., x¢} C X, the matrix (K (x;, x j))f’ j=1 is positive semidefinite. The reproducing kernel
Hilbert space (RKHS) Hg associated with the kernel K is defined [1] to be the completion of the linear span of the
set of functions {K, = K (x, -): x € X} with the inner product (-, -)x given by (K, Ky)gx = K(x, y). Its reproducing
property plays a special role in learning theory:

(Kx, flk =f(x), xeX, feHk. (1.1)

We consider classification algorithms induced by regularization schemes learned from samples. Assume that p is
a probability distribution on Z = X x Y and z = {z; = (xy, y,)}tT:1 e Z7T is a set of random samples independently
drawn according to p. The batch learning algorithm for classification produces a classifier sgn( fz ;) by implementing
an off-line regularization scheme in H g involving the sample z, A > 0 and the loss function ¢ as

feHk

(1 A
fu =argmm{7§¢(ytf(x,>) + 5||f||%(}. (12)

This off-line classification algorithm has been extensively studied in the literature. In particular, the error analysis is
well done; see, e.g., [8,16,21,22,25,27]. The main idea is to show that f; ; has behaviors similar to the regularizing

function f € H of scheme (1.2) defined by

A
bid =arginf{6(f>+ §||f||%<}- (1.3)
feHg

Here £(f) is the generalization error defined as

E£0f) = / $(yf () dp.
A

Though the off-line algorithm (1.2) performs well in theory and in many applications, it might be practically
challenging when the sample size 7 or data is very large. For example, if ¢(x) = (1 — x)4+ = max{l — x,0} or
1- x)ﬁ corresponding to the support vector machines (SVM), the scheme (1.2) is a quadratic optimization problem.
Its standard complexity is about O (T3).

When the sample size is large, online learning algorithms with linear complexity O(T) can be applied and provide
efficient classifiers. These algorithms are generalizations of the perceptron which has a long history, see, e.g., [4,15].

Here we study a family of online learning algorithms associated with a general convex loss function. We assume
throughout the paper that the loss function has the following form.

Definition 1. We say that ¢ :R — R, is an admissible loss function if it is convex and differentiable at 0 with
¢'(0) <O0.

The convexity of ¢ tells us that the left derivative ¢/ (x) = lims_.o_ (¢ (x + 8) — ¢ (x))/8 exists. In this paper we
study the following (stochastic gradient descent) online algorithm for classification given in [4,10,17,26].

Definition 2. The fully online algorithm for classification is defined by f; =0 and
Jrv1=fi — Ut{¢L(tht(xt))Yth, +)\zfz} forr=1,...,T, (1.4)

where A; > 0 is called the regularization parameter and 1, > 0 the step size. The classifier is given by the sign function
sgn(fr+1).

In this fully online algorithm, the regularization parameter A; changes with the learning step ¢. Throughout the
paper we assume that A, < A, for each ¢+ € N. When the regularization parameter A; = A; is independent of the
step ¢, we call the scheme (1.4) partially online.
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The main purpose of this paper is to study the role of the regularization parameter in the fully online algorithm.
A usual form is A; = X177 for some y > 0.

The prediction power of classification algorithms are often measured by the misclassification error which is defined
for a classifier C: X — Y to be the probability of the event {C(x) # y}:

R(C)=Pr0b{C(x);£y}=/P(y7éC(x) |x)d,ox. (1.5)
X
Here px denotes the marginal distribution of p on X, and P(- | x) the conditional probability measure. The best

classifier minimizing the misclassification error is called the Bayes rule (e.g., [7]) and can be expressed as f, =
sgn( f,), where f, is the regression function

fp(X)=/ydp(yIX)=P(y=1IX)—P(y=—1 lx), xeX. (1.6)
Y

Recall that for the online learning algorithm (1.4), we are interested in the classifier sgn( fr+1) produced by the real
valued function fr4; fromz = {ZI}1T=1' So the error analysis for the online classification algorithm (1.4) is aimed at
the excess misclassification error

R(sgn(fr+1)) — R(fo). (1.7)

To illustrate the special role played by the varying regularization parameter {},} in the fully online algorithm (1.4),
we state a result, proved in Section 6, for the hinge loss ¢ (x) = (1 — x) 4. For this loss, the online algorithm (1.4) can
be expressed as f; =0 and

frol = (I = n:de) frs if yr fr(xe) > 1, (1.8)
VA=) fi 4 neyiKe, iy fi () < 1. '
Example 1. Let k :=sup, .y /K (x,x), ¢(x) = (1 —x)4 and for some A1 >0, 0 < < ﬁ, 0<e< %, the
parameters {A;, n;} take the form
A=AtE, g =mr<T VieN. (1.9)
If for some 0 < 8 < 1 and Dy > 0, the pair (p, K) satisfies
A 2
. _ A < B )
fggl({llf fcIIL;,X+2||f||K}\Do)» VA >0, (1.10)
then
—min{® 1_¢
E:,....or (R(sgn(fr41) = R(fo)) < CT ™M 5750, (1.11)

where Ce = C¢ y, 3,.¢.Dy,p 18 @ constant depending on €, 11, A1, k£, Do and 8.

The condition (1.10) concerns the approximation of the function f. in the L' space L })X by functions from the
pr
mediate space between the metric space L})X and the much smaller approximating space Hg . For details, see the
discussion in [3].

Assumptions like (1.10) are necessary to determine the regularization parameter for achieving the learning rate
(1.11). This can be seen from the literature [16,25,27] of the off-line algorithm (1.2): learning rates are obtained
by suitable choices of the regularization parameter A = A(T'), according to the behavior of the approximation error
estimated from a priori conditions on the distribution p and the space Hg.

RKHS Hg. It can be characterized by requiring f, to lie in an interpolation space of the pair (L, , Hg), an inter-

2. Main results

In this paper we investigate fully online algorithm (1.4) in the sense that the regularization parameter A, depends
on the step ¢. This makes the regularizing function ff = f)f change with the step 7.
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2.1. Bounds for the drift error

Our first main result bounds the difference of the regularizing function ff for different regularization parameters.
Denote ff; =0.

Definition 3. The drift error associated with the pair (K, ¢) and the regularization parameter sequence {A;};en iS
defined by means of the function ff’ in (1.3) as

dy=| £} —fk‘LHK, ¢ eN.

The drift error is an approximation-type error and does not depend on the sample drawn. To state our bound, we
need the regularization error [3] or approximation error [18,19] defined as follows.

Definition 4. The regularization error D()) associated with the triple (K, ¢, p) is
: A A 2
D) = inf L&) —E(fO)+SNAIK =) () + 51 % »=0. 2.1)
fEH[( 2 2
where f,? is a minimizer of the generalization error £(f).

The regularization error measures the approximation ability of the space Hg with respect to the classification
process involving ¢ and p. It is independent of the sample. If Hg is dense in C(X), we know that limy .o D(}) = 0.
So a natural assumption would be

D) < DorP  for some 0 < B < 1and Dy > 0. (2.2)

This is a fundamental assumption about the hypothesis space itself. Since D(1) < £(0) + 0= ¢(0) for any A > 0, we
see that (2.2) always holds with 8 =0 and Dy = ¢ (0). Moreover, 8 cannot be greater than 1, as proved in [3].

Theorem 1. Let ¢ be an admissible loss function, f)ip by (1.3), and u > L > 0. Then

1 1 1 1 2D() 2D(w)
I = 2l <5 (=20 e+ 1210 <5 (G- 2) (VB2 + B2 ).

In particular, if with some 0 < y < 1 we take .y = At~ fort > 1, then
dip1 <21 DY) <2 /g 0) /.

Theorem 1 will be proved in Section 3. For the least-square regression, the drift error can be estimated by linear
functional analysis and has been done in [23].

2.2. Strong convergence to the regularizing function

Our second main result provides some estimates for the strong approximation of the learning scheme (1.4) mea-

sured by || fr+1 — ffT || x in the Hx norm. It is an estimation-type error depending on the sample.
Let us demonstrate our general result by considering the special case of hinge loss.

Proposition 1. Let ¢ (x) = (1 — x)4 and with some L1, > 0,0 <y, o < 1, we take
A=AatTV, m=mt ¢ VieNlN. (2.3)

Ifm < —2K21+/\1 andy < % then

EZ],..-,ZT(” fT+l - ffT ||§() < Cm,)»l,KT_Hv
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where Cy, 3, « is a constant depending on n1, A1, k and

pg=1%"7 if7/<05<%(1—3/),
2-3y—20—¢, if3(l—y)<a<l-3yand0<e<2-3y—2a

Proposition 1 follows from Theorem 2 below. Here the convergence rates can be of order O (7¢~2/3) for an arbitrary
small € > 0 by taking y to be small enough. The reason for choosing 6 in two different cases will be seen in the next
subsection.

To state the rates of strong convergence involving a general loss, we need the following constants measuring the
increment of the (left) derivative of the loss ¢.

Definition 5. Denote

20 4/
WL Al '4;(0)|}, x> 0. 2.4)

NO) = sup{|¢/(x)|2 x| <

We say that ¢ has incremental exponent p > 0 if for some N1 > 0 and A; > 0 we have

1\?
N(X)SNl(x> VO < A < Aq. (2.5)
We say that ¢ is locally Lipschitz at the origin if
"(x)—¢'(0
Mo = sup {w} “oo 2.6)
Ix|<1 |x]

For the least-square loss ¢ (x) = (1 — )2, NV =2+ 4K2/A and Mo = 2.

The following explicit rates for the strong approximation will be verified in Section 5 where the constant
Cyy 016, p. Dy, p €an be found explicitly. A brief description for deriving the convergence rate (2.8) below in two differ-
ent cases (2.9) will be given in the next subsection.

Theorem 2. Let {A;, n;} be given by (2.3). Assume (2.5) and (2.6) for ¢. If py < o and

1
m < = , (2.7
K2Mo +2k2N1A; P + 1y

then || fillx < K|¢ (O)‘ for each t € N. If moreover (2.2) holds for the triple (K, ¢, p) and y < then we have

5+4p B’
er (171 = £, 1) < Connep s T (238)
where Cy, 3, «.p, Dy.p IS a constant depending on ny, M1, k, p, Do, B and
Z{a—<2p+1)y, if @p+ 1y <a < 222 09
2—y(1—B) —2a+y)—e ifFEZIY o o OPY

Here in the second case € is an arbitrary number satisfying 0 <e <2 — 3 — )y — 2.

Consider the special case of hinge loss ¢ (x) = max{l — x,0}. We have N(A) =1 and My = 0, hence p = 0.
Moreover, (2.5) holds with Ny =1 and D(1) < ¢(0) =1 for any A > 0. Thus Theorem 2 with Dy =1, 8 = 0 and
p = 0 verifies Proposition 1.

The rate stated in Theorem 2 can be of order T7€?/3 for an arbitrary small € > 0 when y — 0 and o —
w. It says that for the error of fry| — f;’; to be small, we need small y for the regularization parame-
ter. More explicitly, we have

Corollary 1. Under the conditions of Theorem 2, if « = w and ) < e < w, we have

T€+ (5+4p5ﬂ)y—2 '
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The above bound for the strong approximation error decays fast when the regularization parameter A; decays slowly
with a small y.

2.3. Outline of the key analysis

Our key analysis for deriving the bound in Theorem 2 for || f741 — ffT ||k consists of three steps (Sections 4 and 5).

The first step is to bound || fy4+1 — ff? ||k in terms of || f; — f)f llx:

Eey oy (| it = £ %) S A= A By ye (| o = 1211 3) + (26N GOME). (2.10)

This inequality will be proved in Lemma 5. The convexity of the loss function ¢ plays an important role in this step.
From (2.10) we can see the choice of the index « for n; = n1¢t~%: for the last term of (2.10) to be small, we need
large or; while for the middle term to be small, we should choose small «. This gives some clue why in Proposition 1
we should choose 6 in two different cases in order to maximize a power index for the convergence rate.

The second step is to bound || f; — £ |% interms of || f; — f_ |k and d; = || £’ — f{_ Il k. Since d; is expected
to be much smaller than || f; — f)f . | x , we shall apply an uneven inequality 2ab < a’b® +b>~* with a small s € (0, 2)
to 2]l fy — f{_ I xd; and obtain

Eay oot (1o = 1) < (U4 6)Bay e (1 e = £ ) + 77 4 7.
Together with (2.10), this implies E, . (Il fi+1 — ffi ||%() is bounded by

(L4 d = ned)Bey e (| o= £7 |3) + 27 + a2 + (26N Gome) . @.11)

To see how to choose s, we need the decay of d;.
Lemma 1. Let A, = At~ for some 0 <y < 1 and Ay > 0. If (2.2) holds, then

dy <4y DA TP e (2.12)

Proof. The assumption (2.2) in connection with Theorem 1 tells us that for any r > 1,

AtV 1 -1
diy1 < 2\/2DoM| " (1 + DrU=A),
t+1 2 (Al(t+l)_7 e y) \/ 0 +1)

Since (t + 1)Y —t¥ = y&Y~! for some & € (r,1 + 1), we have (r + 1)Y — ¥ <¢”~! and hence

ﬁ
dry1 <~ Do e+ 1)" e n”

This inequality also holds for # = 0 since d; = ||ff’l Ik < V2D < 4/ Dorf . So the desired bound (2.12)
holds true. O

r(1=p)
2

Once the decay of d; is obtained, we can compare the rates of d} = o Dy and g1, = O~ @) for the

first term of (2.11). We shall require
1—
s(l—¥>>a+y 2.13)

so that the coefficient 1 4+ d} — n;A; in the first term of (2.11) behaves as 1 —ct™*77.
On the other hand, we shall see that N(A;)n; behaves as O (t?Y~%). So to dominate the last term d,zfs + dl2 +
2k N (h)ng)? of (2.11) by the quantity d7~*, we require (2 — s)(1 — Y922y < 2(a — py). That is,

s(l = y(12 ﬂ)) /2<1 y(12 ﬂ)) — Qa—2py). 2.14)
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The choice of s in the second step of our key analysis for the bound (2.11) is seen from the restrictions (2.13) and
(2.14). For details, see the proof of Theorem 2.

The third step is to applying the above recursive relation iteratively to get bounds for E;, .. (Il fr+1 — ff; ||%<).
Again for the last term of (2.11) to be small, we need large «, but for the product ]_[tT: 1(1 +d} — n:Ar) (appearing

after iterations) to be small, we require « to be large. This leads to the choice (2.9) for the learning rate (2.8) presented
in Theorem 2.

2.4. Learning rates

The convergence rate stated in Theorem 2, together with a bound for the regularization error (requiring y to be
large, a trade-off) yields learning rate of the misclassification error of the fully online algorithm (1.4), taking suitable
choices of the regularization parameter A; and the step size n;. This is our last main result.

We first present the example of hinge loss again to illustrate the general result.

Corollary 2. Let ¢ (x) = (1 — x)4 and for some L1,n1 >0, 0 < y,a < 1, we take
)"l = A,ltiy, Ny = nltia vVt e N. (215)

Assume 01 < P 2+A and (1.10) holds for the pair (p, K). If0 <y <3 /3 andy <o < M , then forany T € N
we have
— mi oy
Ez,....or (R(s20(f1+1) = R(f) < Cop iy D p T~ ™72, (2.16)

where Cy, 3, «,Dy.p IS a constant depending on 0y, Ay, k, Do and B.
The general learning rate proved in Section 6 can be stated as follows.

Theorem 3. Let ¢ be an admissible loss function such that ¢" (0) exists and is positive. Under the assumptions of
Theorem 2 and 6 given by (2.9), if y < m, we have

/3T pYy

E.,. o (R(sgn(fri1) — R(fo)) < CpT ™t T 551, 2.17)

where C'¢ is a constant depending on n1, A1, k, p, Do, B, N1 and ¢.

There has been a vast literature on the partially online algorithm (that is, when A; = A1 is independent of the
step ¢). Let us mention some works relating to this paper. In [17], a stochastic gradient method in the Hilbert space
‘Hk is considered. Let SL(H ) be the space of positive definite linear operators on Hg, and A: Z — SL(Hg) and
B:Z — Hg be two maps. To learn a stationary point f* satisfying

E.ez(AQ) f*+ B(2)) =0,

they proposed the learning sequence

fir1 = fi = n:{AG) () + B(z) }. (2.18)

But the partially online scheme (1.4) involving the general loss function ¢ is in general nonlinear and is hard to write
in the setting (2.18) except for the least-square loss.

The cumulative loss %ZLI ¢ (vt fr(xy)) for partially online algorithms more general than (1.4) has been well
studied in the literature; see, for example, [4,5,9] and references therein. In particular, cumulative loss bounds are
derived for online linear regression with least-square loss in [4]. In Section 6 of [9], for a learning algorithm different
from (1.4), the relative expected instantaneous loss, measuring the prediction ability of fr4; in linear regression
problem, is analyzed in detail.

A general regularized partially online learning scheme is introduced and analyzed in [10]. Assume the loss func-
tion ¢ is convex, uniformly Lipschitz continuous, the step size has the form n: =0 ?),and A > 0 is fixed. It was
proved there that the average instantaneous risk + Zl: 1@ fr(x0) + 5 || fill K) converges toward the regularized
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generalization error £( ff’ )+ %II ff II%( with error bound O (T ~!/?). This result is about the average instantaneous risk
and A; = Ay

Different from estimating the cumulative loss bounds as done in many previous results (e.g., [5,10]), the strong
approximation for the partially online algorithm was considered in [26], as done for the least-square regression in [20].
In particular, it provides estimates for the error || fr+1 — ff |k in the Hg norm with fixed A, = A; > 0, and then
applies them to the analysis of the misclassification error. The learning rates are given in terms of suitable choices of
the regularization parameter A1 = A1(7T") depending on T'. But the results are not for the fully online algorithm.

Recently, fully online scheme (1.4) has been studied for least-square regression in [23] where ¢ (x) = (1 —x)2. For
this loss function, learning rates for the approximation of the regression function f, by fry; in spaces L%X and Hg,
similar to those [13,14,20,21] for off-line schemes, are derived. Our error bounds stated in Theorems 2 and 3 are for
classification with a general convex loss function including the least-square loss as a special example. So our setting
is more general.

3. Estimating the drift error

In this section, we prove Theorem 1 which estimates || f;fs — f,f lx (with A, u > 0) for the drift error and plays an
important role in deriving satisfactory learning rates.

We first prove the theorem for differentiable loss functions. Under this differentiability assumption, it was observed
in [26] by taking a variational derivative of the functional (regularized generalization error) given in (1.3) that the

minimizer ff’ of the functional satisfies

/ &' (v 0))yKxdp +2f) =0. 3.1)
Z

Lemma 2. Let 1 > A > 0 and ¢ be a differentiable convex loss function. Then
ull 1
17 = 120 <5 (5= U2+ 1521 )
Proof. From (3.1), we know that

1 1
-1t = ;/df(yf,f(x))ylfx dp — x/d(yff’(x))ny dp.
zZ

V4

Combining with the reproducing property (1.1), we know ||ff - f,f 12 = (f)fb - f,f, ff — f,f)K can be expressed as

1= £ = / &' (L) (f — D)) dp— - f o' (L) (f = £2)x) dp. (3.2)

Since ¢ is a convex function on R, we know that
¢'(@)b—a)<¢b)—¢a), VabeR. (3.3)
Thus
¢ (0L 0) 0] () = v ) (0 () — (3 ()
and
&' (v ) (0L @) = v ) <o (rfL ) — (v ().
Putting these two inequalities into (3.2), we get

I = 12l < (5 )G £, 34

Foru>)»>0,wekn0wthat%—ﬁ>Oandhence€(ff)—5(fk¢)20.
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From the definition of f,f, we see that S(f,(f) + %IIf,f”K (é’(fA )+ 5 ||f;\ %) < 0. It follows that

) =) < SUAL T = 15200 = S ULk = 2L ULL T + 1721 )- (33)

Note that || fx g — |l fu g < || fA f,f ||k . Then the desired inequality follows from (3.4). O
Now we can prove Theorem 1.

Proof of Theorem 1. For the admissible loss function ¢, we define for each 0 < ¢ < 1 a convex, differentiable
function on R by

1 X
¢g<x>=/¢(x—se>de=§/qs(u)du.
0 xX—€

It is a differentiable admissible loss function and the conclusion of Lemma 2 holds true.
We define, for 0 < & < 1, £ (f) = [, ¢ (vf (x)) dp and £, = argmin sepg, EO () + 21 F 13
An intermediate step in the proof of Lemma 2 of [26] shows that there exists a sequence {¢; > O}°° | such that

lim; , ¢; = 0 and for each ¢ € {A, u}, the sequence { f } is uniformly bounded in Hg (with respect to j) and

converges to fg weakly. Moreover, S(fg )=limj 0 & (81)(f(£’)) and

£)+ 1A L=ty fe () + 1 |

It follows that hmj_>Oo ||f;(€7)

. ( ( (&)
152 = 520 = Jim {57 = 7 1 = i) <tim o |5 = 57 U = 2D

Ik < ff ||k . The weak convergence implies that

Applying Lemma 2 to the modified loss function ¢, yields

(&)) (¢j) ( j) (&)
17 =5 <5 (= L+ 17 L)

Thus, by letting j — oo, we see that

( ) ep) u(l
I = 78l <timp a2 = 57 e < 5 (5 = U+ 1521 )
Using (2.1), we know that
2D()) 2D(w)
120 <y 52 1l < 22

So the first statement follows.
The second statement follows by observing (f 4+ 1) — ¥ < yt¥~! <+¥~! and that D is a nondecreasing function.
This verifies Theorem 1. O

4. Analyzing the remainder for online schemes

The first two steps in getting the convergence and rates of convergence for the fully online scheme are to analyze

the remainder f;41 — ffj . To this end, we need to bound the learning sequence { f;} first. The following result can be
proved following the same line of reasoning as [26]. A detailed proof is given in Appendix A.

Proposition 2. Assume that ¢'_ is locally Lipschitz at the origin. Define { f;} by (1.4) and denote

’ Y 21 4/
up{lcb(x) ¢ (0] Lk |¢(0)|}’ 120,

M) =s 4.1)

x| <

|x| ' A
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If

(P MO) + 1) <1 Vi1, (4.2)
then

1t < 220 43)
Remark 1. The bound (4.3) seems artificial since the definition of f; depends only on A1, ..., A,_1, noton A;. Actually

the proof of Proposition 2 ensures a tighter bound || f; || x < W for any ¢ > 2 which implies (4.3) by our assumption
A¢ < A;—1. But for our error analysis we only need the bound (4.3).

The following relation between the functions M (1) and N (A) will be used.

Lemma 3. For any A > 0, we have

M) < max{Mo, N(A) + |¢'(0)|} < max{Mo,2N(M)}.

l¢_ (x)—¢'(0)]

x|

Proof. When |x| < 1, the definition (2.6) of M yields

< M.
When 1 < x| < Ol we have w <P (x) = (0)] < | (x)|+1¢'(0)]. So the desired bound follows

from the definition (2.4): |¢”_ (x)| < N(A). O

The following are some commonly used examples of loss functions (e.g., [2,6,11,12,27]). The constants N (A) and
M ()) are estimated.

Example 2. (1) For the least-square loss ¢ (x) = (1 — x)2, we have M()=2and N(A) =2+ %.
(2) For the g-norm SVM loss ¢ (x) = (1 — x)i with 1 < ¢ <2, wehave M(A) <4and N(A) =q(1 + qu/k)q_l.
(3) For the g-norm SVM loss with ¢ > 2, we have M(A) < ¢(g — 1)(1 +x2g/2)42and N(A) = g(1 +x2g/1)4 L.
(4) For the exponential loss ¢ (x) = e, we have N(A) = ¢*/* and M) < eI

Proof. (1) Note the least-square loss ¢ is twice continuously differentiable, ¢’(x) = 2(x — 1) and ¢” = 2. Then we
have the desired expressions.

(2) When 1 < ¢ < 2, the g-norm SVM loss ¢ (x) = (1 —x)% has ¢/ (x) = —¢(1 —x)i_l. The expression for N (1)
follows, which also works for g > 2. We have M (A1) < 4 for all A > 0 since

1 .
" (x) — &' (0 9"l Lop0,1/21 <4, ifxe[0,1/2],
2Ol A wonmi s, itv-172
9"l L[—00,00 < 2, ifx <O.

(3) When g > 2, we have ¢'(0) = —¢g and ¢” (x) = g(g — 1)(1 — x)(fz. So we find that M(1) < g(g — D(1 +
kg /M2
(4) For the exponential loss, we have ¢'(x) = —e™ and ¢”(x) = ¢~*. Then we have N(A) = ¢*/* and M) <
/ 2
16" L2512t @1 =€ *- O

For the error analysis, we also need the following relation derived in [26].

Lemma 4. Let ¢ be an admissible loss function and A > 0. Then

A A A
IR {5(f> + Enfn%} - {E(f;”) +3 14 Hi} VS e M. (44)

We are in a position to provide the first step of the key analysis: estimating || f;4+1 — ffﬁ |k in terms of || f; — f)f k-
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Lemma 5. If the bound (4.3) is valid for some t € N, then (2.10) holds true.

Proof. Denote G; := ¢’ (y; fi(x:))y: Kx, + At f¢. The online scheme (1.4) can be written as f;+1 = f; — 1;G;. Then

| frst = 1215 = 1/ = £2 15 + nPUG% +20Ge £ — fi)g 4.5)

Applying (1.1) and (3.3) to part of the last term of (4.5), we see that the inner product (¢ (y; fr (x;))y: Ky, , ffﬁ —
ft)k equals to

¢/_ ()’tft(xt)) (}’tf)i (xr) — ytft(xt)) < ¢(ytf)f (xt)) - ¢(tht(xt))-
For the other part, we have
1 1 1 1
A A e PR T T A T o PR W 72
Thus the last term of (4.5) can be bounded as
A A
(G £ = fi) < [¢(yszj(x,>) + 515 Hi} - [d)(y,ft(xz)) + E’Mftn%].

Since f; depends on {z1, z2, ..., z;—1} but not on z;, it follows that

A
B, (G 15 = fili) < [f(ffi) + 515 Hi] [am +5 ||ft||,<}

This in connection with Lemma 4 implies

A
EZ1,Z2,...,Z1(<Gta f)f _ft)K) < ;EQ 225eeey Zt— 1(||ft f)f H?{)

By (4.3) and the definition of N (1), we have |¢’ (y; f; (x;))| < N(A;). Hence
«|¢’(0)]

t

The last holds because |¢'(0)| < N(A;). Therefore, we get (2.10) from (4.5). O

1Gillx <kN@R)+ A

< 2N ().

Now we can analyze the remainder f;y; — ffj . Recall Definition 3 for the drift error d;. For simplicity, denote
[Mier (A 4+d —niapy=1and Y[_p, (5 —n;rj) =0

Lemma 6. Let 0 < s < 2. Assume that for some to € N, the bound (4.3) and n: )y < 1 hold for t > to. Then for T > ty,
we have
T

ZT(”fTJrl _f)?r ”?() < 1_[(1""‘#v _nf)‘l)EZI ~~~~~ 2t~ 1(“ff0 fx, 1 ||K)

=iy

T T
+ 3 (@2 a2+ 2eNGon)?) T (1 +dS —nj). (4.6)
1=ty j=t+1

Proof. Let 1 > 1o. Recall that || f{_ — fP Ik =dp. Then [l f;, — fL1% < Ifi = £ W3 +20f — £ llxds +d?.

Applying the elementary inequality 2ab = 2ab*/?b' /> < a?b* + b*>~* (a,b > 0)toa = | f; — ffll llx and b =d;,
we know that

Beporz ([ i = %) S+ d) By oo (1= 12 5) + 2 + a2
Using this bound to (2.10) and noticing the inequalities (1 — n;A;)(1 +d]) <14+d] —niA;, 1 — A < 1, we obtain
By ([ frsr = %) S+ & = nd)Bey o (1= £ [5) 477 + a2+ (26N Gomi).

Applying this recursive relation iteratively fort =T, T — 1, ..., fy, wesee that E;, . (|l fr+1 — ff’T ||%() is bounded
by (4.6). This proves the statement. 0O
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5. Convergence rates for the strong approximation

Now we turn to the last step of getting convergence rates for the strong approximation. We need the following
lemma which modifies an inequality given in [26] and [17].

Lemma7.Letv>0,0<p; <py<]1, T>tyeN. Wehave

T T
Zj—l’zexp{—v > i—m} <Copy.py TP, (5.1)
j=to i=j+1
22t (1-p))

where Cy, p, p, is the constant Cy, p; p, =1+ 7 + (275"

Proof. Denote [ = Z]T;t}) Jj P2 exp{—v ZiT:jH i~P1}. Observe that for u € [i,i + 1] we have i 771 > u~P1. Then

T iepis (THL,—pi g, — T4D7 4D
Zi:./—H’ >fj+l u=Prdu = —p = . It follows that

T—1 . 1—
Dl-pi
I <expl———(T + 1) > iPexp vi+h R
I=p = 1=pi

For x € [j 4+ 1, j 4+ 2], we have (j + 1)! 771 < x!=71 and x < 3 which implies (x/j)?2 < 372 and hence j 72 <
. 1- i —p
3x7P2. So we can bound j P2 exp{ M} by fj’:lz 3x P2 exp| ”f‘l—p’ll } dx. Hence

1-pi
T4, ",
I<expl——2 (T +1i=nm Z_expl 2 dx. (5.2)
- P1 xP2 1— P1
to+1

Decompose the above integral into two parts. For the part with large x on the interval [(T + 1)/2, T + 1], we see
from the bound x71 P2 < (%)p'_’)2 that

T+1 ; " o\ P2 T+1 o
/ —— exp il dx <3 Cal / x Plexp il dx.
xP2 1-— )41 2 1- P1

(T+1)/2 (T+1)/2
: 1 T+D)!-71 1 T+1)/2)! 71 1 T+1)1-P1 .. . .
The last integral equals 3 exp{ %} -3 exp{ %} <35 exp{ % } This in connection with the

bound 2P27P1 2 yields

T+1
3 1=p1 6 T+1Hli-»
/ 2 expl dr < 21 4 nyprrexpl XD L (5.3)
xP2 1-— P1 Vv 1- P1
(T+1)/2
For the part with small x on the interval [ty + 1, (T + 1)/2], we have
(T+1)/2 - (T+1)/2
3 vx! =P v (T+1\ 7 3
— exp dx <exp —_— —dx
xP2 1 — pi 1 — pi 2 xP2
to+1 to+1
which is bounded (by computing the integral) by exp{ %} 1—3,;2 (L) P2 This in connection with (5.2) and
(5.3) implies
6 3 (T+1\'7 1—2n-!
I<—(T+1D)P P24 r+1 exp _M(TJH)H?] )
v l—pp\ 2 1—pi

Now for bounding the last term, we need an elementary inequality involving an arbitrary ¢ > O:

1
exp{—cx} < —x ' vx>0. 5.4
ec
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This inequality is verified by considering the function f(x) = x exp{—cx} which is maximized at x = % Choose

C = %ﬁ:l) and X = (T + l)l_pl in (5.4). Then

p(l —2r1—1h
VT,

22+ (1—py)
ev(1-2P171(1—-py)

1—pi

— = (T4 1)L
o2y T HD

(T +1)1=r } <

Thus I < (% + )(T + 1)P17P2 and the desired inequality follows. 0O

We are in a position to prove Theorem 2 about convergence rates of the error || fr4+1 — ffr ||k stated in Section 2.
Note that

l1—u<e™ VueR. (5.5)
Proof of Theorem 2. We first claim that (4.2) holds. This follows from Lemma 3 together with the restrictions (2.7)
on 1y and py < a:

(K2 M0g) + ) < it~ (k2 (Mo + 2N12; ) + 44)

<t~ (kP Mo + 2 NiAy PP 00t 77) <y (k2 Mo + 262 Niay P+ 4) < L
Then by Proposition 2, we see that || f; || x < KW(O)‘ foreacht > 1.

The restrictions (2.7) on iy gives n1A; < 1, and hence n;A; < 1 fort > 1. In Lemma 6 we take fyp = 1 and according
to a requirement (2.13) and (2.14) we choose

2a—2py . y(1-8)
SZ:z—m, if 2(1 — Y52 — Qe —2py) > a + v,

. 1-
S 20 -E - a2y <ty

(5.6)

where in the second case, € is an arbitrary number satisfying 0 <€ <2(1 — @) — 2(a 4 y). It can be easily seen

that in either case, (2.13) holds and s < 2. Then the error bound (4.6) holds for T > 1. But f;, = ff = 0. So (4.6)
tof

becomes

T T
Eeyooor (| fron = £ 15%) < D2 (d27 + a2 + (kN Gom)?) [T (1445 —njaj). (5.7)
t=1 j=t+1
Apply Lemma 1, we see that
d < (16Dpay )2 <14 16Doaf ™" VjeN. (5.8)

Use this uniform bound for small j and then apply (2.13) and Lemma 1. We see that

“1ns/2 oxU=B) _ 1 1
a5 <4 (Dorf ") 1)<§77j?» =5mij” @)

for every j > Jg, where J; is a positive integer satisfying

I 1_)/( —B)y_ ) e
J;( 3 )—(a+y) >22A+1(DO)\/¢ 1)3/2/(n1k1).

One can take J; to be the smallest integer greater than ((32 + 32D0)»’f71 )/(m)q))% with

2-3a—Q2-2p—PB)y, if2(1-25L) —Qa—2py)>a+y,

T= : > (5.9)
€, if2(1 — Y28y 20 —2py) <a+y.

Since 1 — %njkj > % we know that for any 1 <t < Jg,

T Jg T Js T
: 1 1
[T+ —mn)< ] (0+4) ] (1—Enjx,~)<zfs [T (+45) T] (1—577,-,\,).
1

j=t+1 j=t+1 j=Js+1 j=t+1 j=t+
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Applying (5.8) for t + 1 < j < Jy, the first term above can be bounded as ]_[/J.S:Hl(l + djf) <2+ 16D0)Jf—1)1s, This
in connection with (5.5) implies that for any ¢ > 1,

T T
_ 1
[T (1+d;—nja;) < (4432002 I)JSeXp!—Enm > j—@‘*”}. (5.10)
j=t+1 j=t+1

It provides an estimate for the last part of (5.7).
Next we estimate the other part of (5.7). For t > 1, we have

NGO < Ny(At ™) Pt ™ < Nyay P72,
Thus, d>~* + d? + (2N (A,—1)n)? is bounded by

_ — (1-p) _ _
(4 Dol 1Y 2GS0 16D af i 1=P=2 (e N1 Py ) 2Py =2

According to (5.6), we see that the first term above dominates since

Q-5 -2y =24 —2py, if2(1 - L2 — Qa—2py) > aty,
Q-1 = 7B <20 —2py, if201 - L5 — Qa—2py) <a+.

Therefore, if we denote pp = (2 — s)(1 — M) and the constant
Cl:=16+32D0 71 4 (2 N2 ),
then d,z_s + d,2 + 2k NOu—)n)?* < C~'§t—”2. This in connection with (5.7) and (5.10) yields

T T
0 1
Eey.ooor (| fron — £ |3) < (443200251 E)S t_pzexpi—im)\l » et (5.11)
t=1 j=t+1

Observe from the choice (5.6) of s that

o—@2p+1y, if 2(1 — X072 — 20 = 2py) > o + v,

p2—(a+y)= } -
2—y(1—B) —20a+y)—e if2( -2y 00 —2py)<a+ty.

This power exponent is positive and such an « exists because the restriction (5 +4p — )y <2ensures 2p + 1)y <
a < ZCLZPY iy the first case, and ZFELZAY < <1 — OB Gith 0 <€ <2 — y(1 — B) — 2(a + y) in the
second case. Then by applying Lemma 7, we see that

Eey.oor (| fron = 1 |3) < (443202 ) CLChnraty. TP (5.12)

This completes the proof of Theorem 2 since +y — pp =—6. O
6. Total error bounds and learning rates
To demonstrate our method, let us first prove Example 1.

Proof of Example 1. First we derive the decay (2.2). Observe that the hinge loss ¢ is uniformly Lipschitz satisfying
|¢p(u) — p(v)| < |u — v| for any u, v € R. Then for any functions f, g on X,

lE(H) —E)|=

/¢(yf(X)) —o(ve)do| <IIf =gl - (6.1)
Z

This in connection with the assumption (1.10) and the fact that fp¢ = f, verified in [24] implies that (2.2) holds true.
Then we apply Theorem 2 to estimate || fr41 — ff’r ||%(. We only need to determine the indices. By (2.15) we
have y = i and o = % — €. The left derivative ¢ of the hinge loss is given by ¢’ (x) = —1 for x < 1 and 0 for
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x>1.S0 N(&) =1 and (2.5) holds with N; =1 and p = 0. Moreover, My = 0. So the restriction (2.7) is the same
as 0 <n < ﬁ Also, we have y = }T < ﬁ. The index o = % — € corresponds to the first case of (2.9).

Therefore, by the bound (2.8) in Theorem 2, we have

Ee..... zr(” Jre1 = f)?r ”?{) < CmyM,KyP,Do»ﬂTe_%' (6.2)

According to (1.1) and (6.1), we have E(fr+1) — E(fL) <l fr+1 = £ lloo <&l fr+1 — £ I k- It follows from
the Schwarz inequality and (6.2) that

Bep (€U0 — E(5) <iyfBey (o1 — £ 12) <xyfCompmonTH.

Also, we have E(ffT) — E(f.) < D(Ar) since f, is a minimizer of £(f). Thus we get a bound for the excess gener-
alization error

€_1 _B e B 1€
Eepor (ECT41) — E(D)) <1/ Copiniep Do p T8 + DA T=7 < c o7~ minle 575,
where Ce = «,/Cy, 1.6,p,Do. 8 + Dok‘f.

An important relation concerning the hinge loss is the one [27] between the excess misclassification error and the
excess generalization error given for any measurable function f: X — R as

R(sgn(f)) = R(fe) SEf) = E(fe). (6.3)

Then our conclusion of Example 1 follows. O

Turn to the general loss ¢. To derive rates for the excess misclassification error, we show how the strong conver-
gence of fr to ff; and the regularization error yield the excess generalization error.

Lemma 8. Under the assumptions of Theorem 2 and 0 given by (2.9), if y < m, then

~ . )
Eey.or (ECran) —E(FD)) < CT—™PY 3707},

where C is a constant depending on n1, A1, k, p, Do, B and Ny.

Proof. Decompose E(fr+1) — E(fF) as E(fro1) — EFL) + EFL) — E(fF). Observe that E(f7) — E(f7) <

D(hr) < Dorb.
By Theorem 2, || froilloo <l fretllx <5 |¢ (0)| . From the definition of D(A7), we see that

B+
= y(B+D
2 -2

2147
4 / B v2Do), k=|¢"(0)]
f <K f <KV 2DAT) /AT < K4/ 2DoA7 /AT = .
” AT ||oo ” AT ||K T |¢ (0)| )‘T
¢ 2 O] _ £2le'©) 7 (AP0 \ 5 i
It follows that || £ lloo < s S K o when T > (K|¢ (0)|) 7B+D | Under this restriction of 7, we know that

for any x € X and y € Y, the numbers yfr,1(x) and y f” (x) are both bounded by %}?)'. Thus by the definition of
N(A141), we have

|6 (v fr1(0) = (v @) < NGriD|yfri1 @) = yfL )| kNGO | fron — £ | &

This in connection with the assumption N (A7) < lel_p(T + 1)PY L2PY NMI_PTW implies

Efren —E(f) = / S(yfre1(0)) — d(3fL 0) dp k2P N TP | fro — £ | 4-
V4

Therefore, by Theorem 2, we have

_ _0 _
Ezl,...,zr (5(fT+l) - 5(f,;¢)) < szNl)‘l p\/ Cm,)»l,K,P,DO,ﬁpr 2 +D0)‘/]3T ﬂy'
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The requirement % — py > 0 restricts y by (54 10p — B)y < 2. This verifies the desired bound for the excess
generalization error. [

We can now prove the learning rates for the online algorithm (1.8) with the hinge loss.

Proof of Corollary 2. The assumption (1.10) in connection with (6.1) implies D(X) < DorP . Note that (2.5) holds
with p = 0. Then our conclusion follows from (6.3) and Lemma 8 by considering the first case of (2.9). O

Proof of Theorem 3. Since ¢ is an admissible loss function with ¢”(0) > 0, it was shown in [3] that there exists a
constant depending ¢, only on ¢ such that for any measurable function f : X — R,

R(sen(f)) — R(fo) <o ECF) — E(£D). (6.4)

Then the stated error bound follows from Lemma 8. This proves Theorem 3. 0O

To demonstrate further, we apply our main results to the g-norm SVM loss ¢ (x) = (1 — x)i with g > 1. It satisfies
¢”(0) > 0. According to the expression of N (1), we see that p = ¢ — 1. So Theorem 3 yields the following learning
rates.

Corollary 3. Let ¢(x) = (1 — x)flF with g > 1. Assume (2.2) for the pair (K, p). Let y < —2__ and 2qg — Dy <

T0—5-5
2+2qg—4+B)y 1
o< 3 Afm< 4k2q2 422 (14+u2q /1)9 140y then

B, (R(sgn(frs1) — R(f)) = O(T~minl% “=4=0).

Finally, let us state a general result for the strong approximation. The proof follows from Lemma 6, as that for
Theorem 2.

Proposition 3. Let the pairs {(n;, 1) }72 | satisfy
o0
Z M =400, limn =0, lim A, =0
1 —00 —00
and the following restrictions (with respect to {d;, N (A)})
d N())?
lim -4 —0, lim Nt (N (A1) _

1=00 1 Ay =00 At

0.

If ¢’ is locally Lipschitz at the origin and n; KM ) + 1) < 1 forallt > 1, then

Ezp,zr (| fr1 = f;f’r lx) =0 asT — +oo.
Appendix A. Proof of Proposition 2

We prove Proposition 2 by induction on ¢ € N.
The case t = 1 is trivial since f; = 0. Suppose that (4.3) holds for 7. Consider f;. It can be expressed as

Jiv1 =0 =nihe) fr — [¢/_ (}’tft(xt)) - ¢/(0)])’th, - 77t¢/(0)})th,~
Write the middle term as

/ / ¢ (e fr (x1)) — ¢"(0)
_ K, =
[¢_ (ytft (xt)) 0] (0)]yr ¢ )

where L;:Hg — Hg is a self-adjoint, rank-one, positive linear operator given by L;g = (g, Ky, )k Ky, and we
have used the reproducing property for f;(x;)Ky, = (f:, Ky, )k Kx,. The operator norm of L; can be bounded as
L ll3 g < K2 since

Lifi,

2
(Lig, &)k = (g, Kx)k|” <k*lgl% Vg eHk.
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¢ (v fi (x))—¢'(0)
Ve fr (xe)

by M (A;), since |y, fi (x)| < k|| fillk < sz by our induction hypothesis. The convexity of ¢ implies that ¢’ is
nondecreasing. Hence

0< P O fr(xe)) — ¢'(0)

The local Lipschitz condition tells us that is well defined (set as zero when f;(x;) = 0). It is bounded

< M(Ar).
Ve ft(x¢) h '
¢ i fi)=¢'©) , . - o , _ 5
Therefore, WL’ is a self-adjoint, positive linear operator on Hg and its norm is bounded by kM (X;).

Since n;sz()L,) < 1 —ns Ay, the linear operator 77 := (1 — 9 )l — ¢ WL, is self-adjoint, positive and

T; < (1 —nyAp)I. It follows that
1= nere) fir = ne[ @ (32 fi (x0)) = @' OV ]y Ko, || ¢ = T fill < A= med) |l fill k-

Hence

I fe+ille < A=) fellk +K7h’¢/(0)|~

This in connection with the induction on || f;||x implies that

Kklg'(0)] k|¢'(0)]
At ’

+ "(0)] <
kne|¢'(0)] e

| frrillx < (1 —nihe)

Then the conclusion of Proposition 2 follows. 0O
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